

A060873


Intrinsic 3palindromes: n is an intrinsic kpalindrome if it is a kdigit palindrome in some base.


13



5, 7, 10, 13, 16, 17, 20, 21, 23, 25, 26, 29, 31, 34, 36, 37, 38, 41, 42, 43, 46, 49, 50, 51, 52, 55, 57, 59, 61, 62, 63, 64, 65, 67, 71, 72, 73, 74, 78, 80, 81, 82, 83, 85, 86, 88, 89, 91, 92, 93, 97, 98, 100, 101, 104, 105, 107, 109, 111, 113, 114, 117, 118
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All numbers are intrinsic 1 and (except 1 and 2) 2palindromes, almost all numbers are intrinsic 3palindromes and very few numbers are intrinsic kpalindromes for k >= 4.


LINKS



MATHEMATICA

testQ[n_, k_] := For[b = 2, b <= Ceiling[(n1)^(1/(k1))], b++, d = IntegerDigits[n, b]; If[Length[d] == k && d == Reverse[d], Return[True]]]; n0[k_] := 2^(k1) + 1; Reap[Do[If[testQ[n, 3] === True, Print[n, " ", FromDigits[d], " b = ", b]; Sow[n]], {n, n0[3], 200}]][[2, 1]] (* JeanFrançois Alcover, Nov 07 2014 *)


CROSSREFS



KEYWORD

nonn,base


AUTHOR



STATUS

approved



