login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060870
Number of n X n matrices over GF(5) with rank 1.
3
4, 144, 3844, 97344, 2439844, 61027344, 1525839844, 38146777344, 953673339844, 23841853027344, 596046423339844, 14901161071777344, 372529029235839844, 9313225743103027344, 232830643638610839844, 5820766091270446777344, 145519152283287048339844, 3637978807089805603027344
OFFSET
1,1
FORMULA
a(n) = 1/4 * (5^n - 1)^2.
G.f.: -4*x*(5*x+1) / ((x-1)*(5*x-1)*(25*x-1)). [Colin Barker, Dec 23 2012]
EXAMPLE
a(2) = 144 because there are 145 (the second element in sequence A060720) singular 2 X 2 matrices over GF(5), that have rank <= 1 of which only the zero matrix has rank zero so a(2) = 145 - 1 = 144.
MATHEMATICA
Table[(5^n-1)^2/4, {n, 20}] (* or *) LinearRecurrence[{31, -155, 125}, {4, 144, 3844}, 20] (* Harvey P. Dale, Dec 06 2014 *)
PROG
(PARI) a(n) = { (5^n - 1)^2 / 4 } \\ Harry J. Smith, Jul 13 2009
CROSSREFS
Cf. A060720.
Sequence in context: A036511 A263386 A186720 * A268894 A084703 A186418
KEYWORD
nonn,easy,changed
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), May 04 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001
STATUS
approved