login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179198
Matrix log of triangle A030528, where A030528(n,k) = C(k,n-k).
1
0, 1, 0, -2, 2, 0, 9, -4, 3, 0, -64, 18, -6, 4, 0, 620, -128, 27, -8, 5, 0, -7536, 1240, -192, 36, -10, 6, 0, 109032, -15072, 1860, -256, 45, -12, 7, 0, -1809984, 218064, -22608, 2480, -320, 54, -14, 8, 0, 33562944, -3619968, 327096, -30144, 3100, -384, 63, -16
OFFSET
0,4
FORMULA
L(n,k) = (k+1)*L(n-k,0).
E.g.f. of column 0 satisfies: G(x) = (1+x)/(1+2*x)*G(x+x^2); more formulas given in A179199.
EXAMPLE
Triangle L begins:
0;
1,0;
-2,2,0;
9,-4,3,0;
-64,18,-6,4,0;
620,-128,27,-8,5,0;
-7536,1240,-192,36,-10,6,0;
109032,-15072,1860,-256,45,-12,7,0;
-1809984,218064,-22608,2480,-320,54,-14,8,0;
33562944,-3619968,327096,-30144,3100,-384,63,-16,9,0;
-681799680,67125888,-5429952,436128,-37680,3720,-448,72,-18,10,0;
14980204800,-1363599360,100688832,-7239936,545160,-45216,4340,-512,81,-20,11,0; ...
where column_k = (k+1)*column_0: L(n,k) = (k+1)*L(n-k,0).
PROG
(PARI) {L(n, k)=local(A030528=matrix(n+1, n+1, r, c, if(r>=c, binomial(c, r-c))), LOG, ID=A030528^0); LOG=sum(m=1, n+1, -(ID-A030528)^m/m); (n-k)!*LOG[n+1, k+1]}
CROSSREFS
Cf. A179199 (column 0), A179200, A179201, A030528.
Sequence in context: A009615 A184011 A079194 * A372390 A117739 A243203
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 09 2010
STATUS
approved