login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179200
E.g.f. equals the real part of the i-th iteration of (x + x^2), where i=sqrt(-1).
2
0, 1, 0, -6, 60, -600, 5880, -38640, -624960, 45077760, -1773129600, 58531809600, -1657462435200, 33703750080000, 171919752076800, -76383384045696000, 6034124486347776000, -348318907415331840000, 15862493882862941184000
OFFSET
0,4
COMMENTS
Let H(x) equal the i-th iteration of (x + x^2), then
. the inverse of H(x) equals the conjugate of H(x);
. H(x+x^2) = H(x) + H(x)^2;
. H(x) = F(x) + i*G(x) where G(x) = e.g.f. of A179201 and F(x) = e.g.f. of this sequence, where H(F(x) - i*G(x)) = x;
. coefficients of H(x) form the first column of triangular matrix A030528 raised to the i-th power, where A030528(n,k) = C(k,n-k).
FORMULA
E.g.f.: F(x) satisfies:
. F(x) = (G(x+x^2)/G(x) - 1)/2
. G(x) = sqrt( F(x) + F(x)^2 - F(x+x^2) )
where G(x) is the e.g.f. of A179201.
EXAMPLE
E.g.f: F(x) = x - 6*x^3/3! + 60*x^4/4! - 600*x^5/5! + 5880*x^6/6! +...
The e.g.f. of A179201, G(x), begins:
G(x) = 2*x^2/2! - 6*x^3/3! + 12*x^4/4! + 200*x^5/5! - 6240*x^6/6! + 139440*x^7/7! - 2869440*x^8/8! +...
The i-th iteration of (x + x^2) = H(x) = F(x) + i*G(x), begins:
H(x) = x + i*x^2 - (1 + i)*x^3 + (5 + i)*x^4/2 - (15 - 5*i)*x^5/3 + (49 - 52*i)*x^6/6 - (23 - 83*i)*x^7/3 - (93 + 427*i)*x^8/6 + (15652 + 18537*i)*x^9/126 - (61567 + 24585*i)*x^10/126 + (369519 - 42094*i)*x^11/252 - (1743963 - 1222750*i)*x^12/504 + ...
where H(F(x) - i*G(x)) = x.
PROG
(PARI) {a(n)=local(M=matrix(n+1, n+1, r, c, if(r>=c, binomial(c, r-c))), L=sum(k=1, #M, -(M^0-M)^k/k), N=sum(k=0, #L, (I*L)^k/k!)); if(n<1, 0, real(n!*N[n, 1]))}
CROSSREFS
Sequence in context: A122653 A299869 A136943 * A136938 A136930 A136936
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 02 2010
STATUS
approved