

A195006


Some numbers of the form 2*x^3 + y^3 + z^3 found by a certain algorithm.


6



1247, 1462, 1588, 2246, 2822, 3307, 3335, 3641, 4990, 5188, 5279, 5620, 5629, 6707, 6980, 7097, 7177, 7323, 7519, 7853, 8114, 8380, 8572, 8644, 8887, 9274, 9589, 9850
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

From Table 1, p. 7 of MacLeod.


LINKS

Table of n, a(n) for n=1..28.
N. Elkies, Rational points near curves and small nonzero x^3  y^2 via lattice reduction, arXiv:math/0005139 [math.NT], 2000.
N. Elkies, Rational points near curves and small nonzero x^3  y^2 via lattice reduction, in Algorithmic Number Theory (Leiden 2000), Lecture Notes in Computer Science 1838, Springer 2000.
A.S. Elsenhans, J. Jahnel, New sums of three cubes, Math. Comp. 78 (2009) 12271230.
K. Koyama, On searching for solutions of the Diophantine equation x^3 + y^3 + 2z^3 = n, Math. Comp. 69 (2000) 17351742.
Allan J. MacLeod, New Solutions of d=2x^3+y^3+z^3, arXiv:1109.2396v1 [math.NT], Sep 12, 2011.


EXAMPLE

1247 = 2*26478194^3 + 108525095^3 + (109565866)^3.


CROSSREFS

Sequence in context: A190413 A252675 A066696 * A114528 A069146 A251648
Adjacent sequences: A195003 A195004 A195005 * A195007 A195008 A195009


KEYWORD

nonn,less


AUTHOR

Jonathan Vos Post, Sep 12 2011


STATUS

approved



