login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195005 E.g.f.: Sum_{n>=0} 2^n*(exp(n*x) - 1)^n. 6
1, 2, 34, 1490, 122530, 16227602, 3155309794, 846406200530, 299510392317730, 135163342884412562, 75760096553546176354, 51633670624622762956370, 42049600429338786951232930, 40326932840083815683430101522, 44984263429111569097120217311714 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..217

FORMULA

a(n) = Sum_{k=0..n} 2^k*k^n*k!*Stirling2(n,k).

a(n) ~ c * (1 + 2*exp(1/r))^n * r^(2*n) * n!^2 / sqrt(n), where r = 0.925556278640887084941460444526398190071550948416... is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/2 and c = 0.3559088366632706316517829481255877447669425726507348... - Vaclav Kotesovec, Oct 04 2020

EXAMPLE

E.g.f.: A(x) = 1 + 2*x + 34*x^2/2! + 1490*x^3/3! + 122530*x^4/4! +...

where

A(x) = 1 + 2*(exp(x)-1) + 2^2*(exp(2*x)-1)^2 + 2^3*(exp(3*x)-1)^3 +...

MATHEMATICA

Flatten[{1, Table[Sum[2^k * k^n * k! * StirlingS2[n, k], {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 04 2020 *)

PROG

(PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(sum(m=0, n, 2^m*(exp(m*X)-1)^m), n)}

(PARI) {Stirling2(n, k)=if(k<0|k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}

{a(n)=sum(k=0, n, 2^k*k^n*k!*Stirling2(n, k))}

CROSSREFS

Cf. A195263, A122399, A301581, A338040, A338044.

Sequence in context: A227935 A264669 A187546 * A215957 A171732 A291903

Adjacent sequences:  A195002 A195003 A195004 * A195006 A195007 A195008

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 08:19 EST 2021. Contains 349419 sequences. (Running on oeis4.)