login
A195008
Numbers k such that there are no primes between k*sqrt(k-1) and (k+1)*sqrt(k).
1
1, 24, 36, 47, 93, 105, 109, 117, 122, 207, 627, 996
OFFSET
1,2
COMMENTS
Numbers k such that there are only nonprimes between k*sqrt(k-1) and (k+1)*sqrt(k).
No more terms up to 100000. - Franklin T. Adams-Watters, Sep 08 2011
EXAMPLE
a(1)=1 because 1*sqrt(1-1)=0<(nonprime 1)<(1+1)*sqrt(1)=2,
a(2)=24 because 24*sqrt(24-1)<(nonprimes 116,117,118,119,120,121,122)<(24+1)*sqrt(24).
MATHEMATICA
Join[{1}, Select[Range[1000], PrimePi[# Sqrt[#-1]]==PrimePi[(#+1)Sqrt[#]]&]] (* Harvey P. Dale, Jun 01 2018 *)
PROG
(PARI) isa(n)=if(n<=1, n==1, primepi(floor(n*sqrt(n-1)))==primepi(floor((n+1)*sqrt(n))))
CROSSREFS
Cf. A195007.
Sequence in context: A307682 A290016 A330880 * A054775 A273088 A334674
KEYWORD
nonn,more,hard
AUTHOR
EXTENSIONS
a(11) and a(12) from Franklin T. Adams-Watters, Sep 08 2011
STATUS
approved