login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195009 Triangle read by rows, T(n,k) = k^n*A056040(n), n>=0, 0<=k<=n. 2
1, 0, 1, 0, 2, 8, 0, 6, 48, 162, 0, 6, 96, 486, 1536, 0, 30, 960, 7290, 30720, 93750, 0, 20, 1280, 14580, 81920, 312500, 933120, 0, 140, 17920, 306180, 2293760, 10937500, 39191040, 115296020, 0, 70, 17920, 459270, 4587520, 27343750, 117573120, 403536070, 1174405120 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..44.

Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.

FORMULA

T(n,k) = f(n)*lim(x=0, (d^n/dx)(BesselI(0,2*k*x)+(2*k*x+1) *BesselI(1,2*k*x) where f(n) = (n+1)/2 if n is odd, 1/(n+1) otherwise.

EXAMPLE

                     1

                    0, 1

                  0, 2, 8

               0, 6, 48, 162

            0, 6, 96, 486, 1536

       0, 30, 960, 7290, 30720, 93750

0, 20, 1280, 14580, 81920, 312500, 933120

MAPLE

swing := n -> n!/iquo(n, 2)!^2: pow := (n, k) -> if k=0 and n=0 then 1 else n^k fi: A195009 := (n, k) -> pow(k, n)*swing(n):

# Formula:

omega := proc(x) BesselI(0, 2*m*x)+(2*m*x+1)*BesselI(1, 2*m*x) end:

f := n -> `if`(irem(n, 2)=1, (n+1)/2, 1/(n+1)): A195009 := proc(n, k)

limit(f(n)*(D@@n)(omega)(x), x=0); subs(m=k, %) end;

MATHEMATICA

sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; t[0, 0] = 1; t[n_, k_] := k^n*sf[n]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)

CROSSREFS

Sequence in context: A011055 A268813 A242056 * A337997 A020860 A309420

Adjacent sequences:  A195006 A195007 A195008 * A195010 A195011 A195012

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Sep 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 19:00 EDT 2022. Contains 357270 sequences. (Running on oeis4.)