OFFSET
0,5
LINKS
Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
FORMULA
T(n,k) = f(n)*lim(x=0, (d^n/dx)(BesselI(0,2*k*x)+(2*k*x+1) *BesselI(1,2*k*x) where f(n) = (n+1)/2 if n is odd, 1/(n+1) otherwise.
EXAMPLE
1
0, 1
0, 2, 8
0, 6, 48, 162
0, 6, 96, 486, 1536
0, 30, 960, 7290, 30720, 93750
0, 20, 1280, 14580, 81920, 312500, 933120
MAPLE
swing := n -> n!/iquo(n, 2)!^2: pow := (n, k) -> if k=0 and n=0 then 1 else n^k fi: A195009 := (n, k) -> pow(k, n)*swing(n):
# Formula:
omega := proc(x) BesselI(0, 2*m*x)+(2*m*x+1)*BesselI(1, 2*m*x) end:
f := n -> `if`(irem(n, 2)=1, (n+1)/2, 1/(n+1)): A195009 := proc(n, k)
limit(f(n)*(D@@n)(omega)(x), x=0); subs(m=k, %) end;
MATHEMATICA
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; t[0, 0] = 1; t[n_, k_] := k^n*sf[n]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 07 2011
STATUS
approved