login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242056
Decimal expansion of 2*Pi*phi(0), a constant appearing in connection with a study of zeros of the integral of xi(z), where phi(t) and xi(z) are functions related to Riemann's zeta function (see Finch reference for the definition of these functions).
1
2, 8, 0, 6, 6, 7, 9, 4, 0, 1, 7, 7, 7, 6, 9, 2, 1, 8, 3, 0, 5, 0, 9, 1, 4, 2, 7, 3, 8, 1, 8, 1, 5, 4, 5, 6, 4, 1, 5, 4, 9, 8, 0, 0, 2, 8, 5, 0, 2, 2, 5, 6, 3, 5, 5, 9, 4, 2, 4, 6, 9, 7, 1, 2, 7, 0, 6, 9, 9, 2, 2, 6, 5, 6, 0, 1, 3, 8, 3, 0, 2, 1, 8, 2, 2, 4, 4, 8, 9, 6, 6, 2, 3, 0, 3, 6, 2, 6, 6, 0, 9, 6, 6, 5, 3
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.32 De Bruijn-Newman constant, p. 203.
LINKS
Jeffrey C. Lagarias and David Montague, The Integral of the Riemann xi-function. arXiv:1106.4348 [math.NT], 2011.
Jeffrey C. Lagarias and David Montague, The Integral of the Riemann xi-function, Commentarii Mathematici Universitatis Sancti Pauli 60 (2011), No. 1-2, pp. 143-169.
FORMULA
Equals 2*Pi*sum_{n>=1} (Pi*n^2*(2*Pi*n^2-3))/e^(Pi*n^2).
EXAMPLE
2.8066794017776921830509142738181545641549800285022563559424697...
MATHEMATICA
digits = 105; 2*Pi*NSum[(Pi*n^2*(2*Pi*n^2-3))/E^(Pi*n^2), {n, 1, Infinity}, WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First
PROG
(PARI) 2*Pi*suminf(n=1, t=Pi*n^2; t*(2*t-3)/exp(t)) \\ Charles R Greathouse IV, Mar 10 2016
CROSSREFS
Sequence in context: A011055 A268813 A372719 * A195009 A337997 A372338
KEYWORD
nonn,cons
AUTHOR
STATUS
approved