login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242054 Column 3 of square array A246072 / n!. 2
1, 1, 5, 18, 75, 396, 2052, 11586, 71787, 458352, 3103668, 22202874, 164999826, 1281692088, 10371684312, 86973240204, 755908929603, 6794220017664, 63008287321788, 602270212069098, 5924679849081126, 59897824980579576, 621672797654084520, 6616610400436719588 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..200

FORMULA

Recurrence: n*(125*n^10 - 8575*n^9 + 249165*n^8 - 3972421*n^7 + 38651424*n^6 - 241441049*n^5 + 985299581*n^4 - 2598873155*n^3 + 4233949973*n^2 - 3823560792*n + 1433318628)*a(n) = (n-1)*(250*n^10 - 17275*n^9 + 505255*n^8 - 7939307*n^7 + 74253125*n^6 - 433278950*n^5 + 1592429495*n^4 - 3581735158*n^3 + 4503495303*n^2 - 2437269642*n + 30743664)*a(n-1) + (250*n^12 - 17025*n^11 + 485380*n^10 - 7526552*n^9 + 70321082*n^8 - 411180662*n^7 + 1481140960*n^6 - 2907087063*n^5 + 1110382294*n^4 + 8175223780*n^3 - 18648517428*n^2 + 16445473512*n - 5256191136)*a(n-2) + (125*n^13 - 7575*n^12 + 179440*n^11 - 1844901*n^10 + 1377531*n^9 + 175414789*n^8 - 2147090919*n^7 + 13587878007*n^6 - 53501005344*n^5 + 136256919050*n^4 - 221250046545*n^3 + 215137237254*n^2 - 107999226624*n + 18548116944)*a(n-3) - (3125*n^12 - 230275*n^11 + 7312925*n^10 - 129375074*n^9 + 1424467574*n^8 - 10349546810*n^7 + 51109969432*n^6 - 173096865441*n^5 + 398028650726*n^4 - 601201146808*n^3 + 556233509382*n^2 - 271925267076*n + 47484061632)*a(n-4) - (n-4)*(3125*n^12 - 222875*n^11 + 6789125*n^10 - 115816245*n^9 + 1238520315*n^8 - 8794888450*n^7 + 42652555528*n^6 - 142304505773*n^5 + 322756817266*n^4 - 480186892231*n^3 + 434864239701*n^2 - 204163716870*n + 31770252360)*a(n-5) - (n-5)*(n-4)*(1375*n^12 - 95825*n^11 + 2889440*n^10 - 49131951*n^9 + 525311115*n^8 - 3732302998*n^7 + 18093070721*n^6 - 60182645063*n^5 + 135414119977*n^4 - 198015832273*n^3 + 172828363290*n^2 - 74116518432*n + 7983006192)*a(n-6) - (n-6)*(n-5)*(n-4)*(250*n^10 - 13325*n^9 + 316180*n^8 - 4021155*n^7 + 29819852*n^6 - 134332700*n^5 + 368917385*n^4 - 590456906*n^3 + 472005585*n^2 - 82277310*n - 69925968)*a(n-7) + (n-7)*(n-6)*(n-5)*(n-4)*(250*n^10 - 14025*n^9 + 329680*n^8 - 4094477*n^7 + 29774855*n^6 - 132986602*n^5 + 367961264*n^4 - 609685740*n^3 + 541560093*n^2 - 175805898*n - 27276984)*a(n-8) - (n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(125*n^10 - 7325*n^9 + 177615*n^8 - 2272801*n^7 + 17127047*n^6 - 80049056*n^5 + 235218311*n^4 - 424843636*n^3 + 437741568*n^2 - 212268240*n + 23612904)*a(n-9).

a(n) ~ n^(2*n/3) * exp(-2*n/3 + n^(2/3) + 4/3*n^(1/3) - 8/9) / sqrt(3). - Vaclav Kotesovec, Aug 13 2014

MAPLE

with(numtheory): with(combinat): M:=multinomial:

b:= proc(n, k, p) local l, g; l, g:= sort([divisors(p)[]]),

      proc(k, m, i, t) option remember; local d, j; d:= l[i];

        `if`(i=1, m!, add(M(k, k-(d-t)*j, (d-t)$j)/j!*

         (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,

        `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),

        `if`(t=0, [][], m/t))))

      end; g(k, n-k, nops(l), 0)

    end:

A:= (n, k)-> `if`(k=0, (2*n)!, b(2*n, n, k)):

seq(A(n, 3)/n!, n = 0..20); # after Alois P. Heinz

MATHEMATICA

multinomial[n_, k_List] := n!/Times @@ (k!);

M = multinomial;

b[n_, k_, p_] := b[n, k, p] = Module[{l, g}, l = Sort[Divisors[p]]; g[k0_, m_, i_, t_] := g[k0, m, i, t] = Module[{d}, d = l[[i]]; If[i == 1, m!, Sum[M[k0, Join[{k0-(d-t)j}, Table[d-t, {j}]]]/j! (d-1)!^j M[m, Join[{m - t j}, Table[t, {j}]]] If[d-t == 1, g[k0 - (d-t) j, m - t j, i-1, 0], g[k0 - (d-t)j, m - t j, i, t+1]], {j, 0, Min[k0/(d-t), If[t == 0, Infinity, m/t]]}]]]; g[k, n-k, Length[l], 0]];

A[n_, k_] := If[k == 0, (2n)!, b[2n, n, k]];

a[n_] := A[n, 3]/n!;

a /@ Range[0, 100] (* Jean-François Alcover, Nov 13 2020, after Alois P. Heinz in A246072 *)

CROSSREFS

Cf. A246072.

Sequence in context: A034551 A052926 A296123 * A027134 A227451 A017960

Adjacent sequences:  A242051 A242052 A242053 * A242055 A242056 A242057

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Aug 13 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 00:21 EST 2021. Contains 349530 sequences. (Running on oeis4.)