login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242052
Decimal expansion of the expected number of zeros of a+b*e^z satisfying |z|<1, a and b being random complex Gaussian coefficients.
0
2, 0, 2, 9, 1, 8, 9, 2, 1, 2, 8, 2, 8, 8, 9, 7, 4, 1, 2, 8, 2, 8, 4, 7, 7, 2, 0, 7, 6, 1, 4, 8, 7, 3, 5, 2, 4, 6, 8, 3, 2, 1, 7, 5, 1, 9, 2, 4, 4, 5, 5, 2, 6, 3, 1, 7, 8, 8, 1, 6, 2, 3, 8, 6, 9, 5, 5, 6, 2, 7, 3, 1, 4, 8, 5, 9, 5, 4, 2, 6, 7, 3, 5, 1, 3, 8, 9, 9, 8, 2, 4, 6, 7, 4, 6, 3, 0, 9, 5, 2, 9, 3
OFFSET
1,1
LINKS
Gregorio Malajovich, On the expected number of zeros of nonlinear equations . arXiv:1106.6014v5 [math.AG] 28 Jun 2013 - arXiv.org
FORMULA
(1/Pi)*integral_{x^2+y^2<1} exp(2*x)/(1+exp(2*x))^2 dx dy = (1/(2*Pi))*integral_{x=-1..1} sqrt(1 - x^2)*sech(x)^2 dx.
EXAMPLE
2.029189212828897412828477207614873524683217519244552631788...
MATHEMATICA
(1/(2*Pi))*NIntegrate[Sqrt[1 - x^2]*Sech[x]^2, {x, -1, 1}, WorkingPrecision -> 102] // RealDigits // First
CROSSREFS
Sequence in context: A211930 A212026 A246003 * A344765 A259356 A137302
KEYWORD
nonn,cons
AUTHOR
STATUS
approved