login
A242049
Decimal expansion of 'lambda', the Lyapunov exponent characterizing the asymptotic growth rate of the number of odd coefficients in Pascal trinomial triangle mod 2, where coefficients are from (1+x+x^2)^n.
2
4, 2, 9, 9, 4, 7, 4, 3, 3, 3, 4, 2, 4, 5, 2, 7, 2, 0, 1, 1, 4, 6, 9, 7, 0, 3, 5, 5, 1, 9, 9, 2, 2, 3, 2, 3, 3, 2, 4, 0, 6, 5, 0, 1, 1, 5, 8, 9, 3, 0, 4, 6, 1, 7, 0, 4, 0, 2, 7, 6, 0, 7, 2, 5, 7, 4, 2, 8, 3, 3, 7, 2, 8, 3, 1, 3, 9, 8, 1, 0, 5, 6, 8, 4, 5, 6, 3, 4, 9, 0, 0, 7, 4, 8, 4, 7, 4, 2, 5, 3, 6, 6, 5, 4, 3
OFFSET
0,1
LINKS
Steven Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008, p. 14.
Sara Kropf and Stephan Wagner, q-Quasiadditive functions, arXiv:1605.03654 [math.CO], 2016. See section 5 example 8 mean mu for the case s_n is the Jacobsthal sequence.
Kevin Ryde, vpar examples/complete-binary-matchings.gp calculations and code in PARI/GP, see log(C).
FORMULA
Equals (1/4)*Sum_{k >= 1} (log((1/3)*(2^(k+2) - (-1)^k))/2^k).
From Kevin Ryde, Feb 13 2021: (Start)
Equals log(A338294).
Equals Sum_{k>=1} (1/k)*( 1/(1+(-2)^(k+1)) - 1/(-3)^k ) (an alternating series).
(End)
EXAMPLE
0.429947433342452720114697035519922323324065011589304617040276...
= log(1.53717671718235794959014032895522160250150809343236...)
MATHEMATICA
digits = 105; lambda = (1/4)*NSum[Log[(1/3)*(2^(k+2) - (-1)^k)]/2^k, {k, 1, Infinity}, WorkingPrecision -> digits + 5, NSumTerms -> 500]; RealDigits[lambda, 10, digits] // First
PROG
(PARI) (1/4)*suminf(k=1, (log((1/3)*(2^(k+2) - (-1)^k))/2^k)) \\ Michel Marcus, May 14 2020
CROSSREFS
Cf. A338294.
Cf. A242208 (1+x+x^2)^n, A242021 (1+x+x^3)^n, A242022 (1+x+x^2+x^3+x^4)^n, A241002 (1+x+x^4)^n, A242047 (1+x+...+x^4+x^5)^n, A242048 (1+x+...+x^5+x^6)^n.
Sequence in context: A144811 A185654 A228041 * A179398 A233295 A298567
KEYWORD
nonn,cons
AUTHOR
STATUS
approved