login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242049 Decimal expansion of 'lambda', the Lyapunov exponent characterizing the asymptotic growth rate of the number of odd coefficients in Pascal trinomial triangle mod 2, where coefficients are from (1+x+x^2)^n. 2
4, 2, 9, 9, 4, 7, 4, 3, 3, 3, 4, 2, 4, 5, 2, 7, 2, 0, 1, 1, 4, 6, 9, 7, 0, 3, 5, 5, 1, 9, 9, 2, 2, 3, 2, 3, 3, 2, 4, 0, 6, 5, 0, 1, 1, 5, 8, 9, 3, 0, 4, 6, 1, 7, 0, 4, 0, 2, 7, 6, 0, 7, 2, 5, 7, 4, 2, 8, 3, 3, 7, 2, 8, 3, 1, 3, 9, 8, 1, 0, 5, 6, 8, 4, 5, 6, 3, 4, 9, 0, 0, 7, 4, 8, 4, 7, 4, 2, 5, 3, 6, 6, 5, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..104.

Steven Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008, p. 14.

Sara Kropf and Stephan Wagner, q-Quasiadditive functions, arXiv:1605.03654 [math.CO], 2016.  See section 5 example 8 mean mu for the case s_n is the Jacobsthal sequence.

Kevin Ryde, vpar examples/complete-binary-matchings.gp calculations and code in PARI/GP, see log(C).

FORMULA

Equals (1/4)*Sum_{k >= 1} (log((1/3)*(2^(k+2) - (-1)^k))/2^k).

From Kevin Ryde, Feb 13 2021: (Start)

Equals log(A338294).

Equals Sum_{k>=1} (1/k)*( 1/(1+(-2)^(k+1)) - 1/(-3)^k ) (an alternating series).

(End)

EXAMPLE

0.429947433342452720114697035519922323324065011589304617040276...

= log(1.53717671718235794959014032895522160250150809343236...)

MATHEMATICA

digits = 105; lambda = (1/4)*NSum[Log[(1/3)*(2^(k+2) - (-1)^k)]/2^k, {k, 1, Infinity}, WorkingPrecision -> digits + 5, NSumTerms -> 500]; RealDigits[lambda, 10, digits] // First

PROG

(PARI) (1/4)*suminf(k=1, (log((1/3)*(2^(k+2) - (-1)^k))/2^k)) \\ Michel Marcus, May 14 2020

CROSSREFS

Cf. A338294.

Cf. A242208 (1+x+x^2)^n, A242021 (1+x+x^3)^n, A242022 (1+x+x^2+x^3+x^4)^n, A241002 (1+x+x^4)^n, A242047 (1+x+...+x^4+x^5)^n, A242048 (1+x+...+x^5+x^6)^n.

Sequence in context: A144811 A185654 A228041 * A179398 A233295 A298567

Adjacent sequences:  A242046 A242047 A242048 * A242050 A242051 A242052

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, Aug 13 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 04:53 EST 2021. Contains 349346 sequences. (Running on oeis4.)