OFFSET
0,1
LINKS
Steven Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008, p. 14.
Sara Kropf and Stephan Wagner, q-Quasiadditive functions, arXiv:1605.03654 [math.CO], 2016. See section 5 example 8 mean mu for the case s_n is the Jacobsthal sequence.
Kevin Ryde, vpar examples/complete-binary-matchings.gp calculations and code in PARI/GP, see log(C).
FORMULA
Equals (1/4)*Sum_{k >= 1} (log((1/3)*(2^(k+2) - (-1)^k))/2^k).
From Kevin Ryde, Feb 13 2021: (Start)
Equals log(A338294).
Equals Sum_{k>=1} (1/k)*( 1/(1+(-2)^(k+1)) - 1/(-3)^k ) (an alternating series).
(End)
EXAMPLE
0.429947433342452720114697035519922323324065011589304617040276...
= log(1.53717671718235794959014032895522160250150809343236...)
MATHEMATICA
digits = 105; lambda = (1/4)*NSum[Log[(1/3)*(2^(k+2) - (-1)^k)]/2^k, {k, 1, Infinity}, WorkingPrecision -> digits + 5, NSumTerms -> 500]; RealDigits[lambda, 10, digits] // First
PROG
(PARI) (1/4)*suminf(k=1, (log((1/3)*(2^(k+2) - (-1)^k))/2^k)) \\ Michel Marcus, May 14 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Aug 13 2014
STATUS
approved