Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 17 2020 05:41:28
%S 2,0,2,9,1,8,9,2,1,2,8,2,8,8,9,7,4,1,2,8,2,8,4,7,7,2,0,7,6,1,4,8,7,3,
%T 5,2,4,6,8,3,2,1,7,5,1,9,2,4,4,5,5,2,6,3,1,7,8,8,1,6,2,3,8,6,9,5,5,6,
%U 2,7,3,1,4,8,5,9,5,4,2,6,7,3,5,1,3,8,9,9,8,2,4,6,7,4,6,3,0,9,5,2,9,3
%N Decimal expansion of the expected number of zeros of a+b*e^z satisfying |z|<1, a and b being random complex Gaussian coefficients.
%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants.</a> 2.15 p. 20.
%H Gregorio Malajovich, <a href="http://arxiv.org/pdf/1106.6014.pdf">On the expected number of zeros of nonlinear equations .</a> arXiv:1106.6014v5 [math.AG] 28 Jun 2013 - arXiv.org
%F (1/Pi)*integral_{x^2+y^2<1} exp(2*x)/(1+exp(2*x))^2 dx dy = (1/(2*Pi))*integral_{x=-1..1} sqrt(1 - x^2)*sech(x)^2 dx.
%e 2.029189212828897412828477207614873524683217519244552631788...
%t (1/(2*Pi))*NIntegrate[Sqrt[1 - x^2]*Sech[x]^2, {x, -1, 1}, WorkingPrecision -> 102] // RealDigits // First
%K nonn,cons
%O 1,1
%A _Jean-François Alcover_, Aug 13 2014