The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227451 Number whose binary expansion encodes via runlengths the partition that is at the top of the main trunk of Bulgarian solitaire game tree drawn for the deck with n(n+1)/2 cards. 5
 0, 1, 5, 18, 77, 306, 1229, 4914, 19661, 78642, 314573, 1258290, 5033165, 20132658, 80530637, 322122546, 1288490189, 5153960754, 20615843021, 82463372082, 329853488333, 1319413953330, 5277655813325, 21110623253298, 84442493013197, 337769972052786, 1351079888211149 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The terms have particular patterns in their binary expansion, which encodes for an "almost triangular partition" when runlength encoding of unordered partitions are used (please see A129594 for how that encoding works). These are obtained from the perfectly triangular partitions shown in A037481 by inserting 1 to the front of the partition and decrementing the last summand (the largest) by one: n a(n) same in binary run lengths unordered partition 0 0 0 [] {} 1 1 1  {1} 2 5 101 [1,1,1] {1+1+1} 3 18 10010 [1,2,1,1] {1+1+2+2} 4 77 1001101 [1,2,2,1,1] {1+1+2+3+3} 5 306 100110010 [1,2,2,2,1,1] {1+1+2+3+4+4} 6 1229 10011001101 [1,2,2,2,2,1,1] {1+1+2+3+4+5+5} 7 4914 1001100110010 [1,2,2,2,2,2,1,1] {1+1+2+3+4+5+6+6} 8 19661 100110011001101 [1,2,2,2,2,2,2,1,1] {1+1+2+3+4+5+6+7+7} 9 78642 10011001100110010 [1,2,2,2,2,2,2,2,1,1] {1+1+2+3+4+5+6+7+8+8} These partitions occur at the tops of the main trunks of the game trees constructed for decks consisting of 1+2+3+...+k cards. See A037481 for the encoding of the roots of the main trunks of the same trees. REFERENCES Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001. LINKS Antti Karttunen, Table of n, a(n) for n = 0..1000 Wikipedia, Bulgarian solitaire Index entries for linear recurrences with constant coefficients, signature (4,1,-4). FORMULA a(0)=0, a(1)=1, for n>=2, a(n) = A053645(2*A037481(n)) + (1 - (n mod 2)). [Follows from the "insert 1 and decrement the largest part by one" operation on triangular partitions] Alternatively: a(0)=0, a(1)=1, and for n>=2, if n is even, then a(n) = 1 + (4*A182512((n-2)/2)) + 2^(2*(n-1)), and if n is odd, then a(n) = 2 + (16*A182512((n-3)/2)) + 2^(2*(n-1)). From Ralf Stephan, Jul 20 2013: (Start) a(n) = (1/10) * (3*4^n + 7*(-1)^n - 5). a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3), n>3. G.f.: (4*x^4 - 3*x^3 + x^2 + x)/((1-x)*(1+x)/(1-4*x). (End) MATHEMATICA LinearRecurrence[{4, 1, -4}, {0, 1, 5, 18, 77}, 40] (* Harvey P. Dale, Sep 22 2016 *) PROG (Scheme, two variants) (define (A227451 n) (if (< n 2) n (+ (A053645 (* 2 (A037481 n))) (- 1 (modulo n 2))))) (define (A227451v2 n) (cond ((< n 2) n) ((even? n) (+ 1 (* 4 (+ (A182512 (/ (- n 2) 2)))) (expt 2 (* 2 (- n 1))))) (else (+ 2 (* 16 (A182512 (/ (- n 3) 2))) (expt 2 (* 2 (- n 1))))))) (PARI) a(n)=if(n<1, 0, if(n==1, 1, (3*4^n+7*(-1)^n-5)/10)) \\ Ralf Stephan CROSSREFS Cf. A037481, A182512. The left edge of the table A227452. Sequence in context: A296123 A242054 A027134 * A017960 A162814 A082034 Adjacent sequences: A227448 A227449 A227450 * A227452 A227453 A227454 KEYWORD nonn,base,easy AUTHOR Antti Karttunen, Jul 12 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 14:07 EDT 2023. Contains 365551 sequences. (Running on oeis4.)