login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182512 a(n) = (16^n - 1)/5. 7
0, 3, 51, 819, 13107, 209715, 3355443, 53687091, 858993459, 13743895347, 219902325555, 3518437208883, 56294995342131, 900719925474099, 14411518807585587, 230584300921369395, 3689348814741910323, 59029581035870565171, 944473296573929042739 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Even bisection of A015521 and also A112627. All of the terms are divisible by 3, even terms by 17.
These are binary numbers 11, 110011, 1100110011, ... - Jamie Simpson, Oct 28 2022
LINKS
E. Estrada and J. A. de la Pena, From Integer Sequences to Block Designs via Counting Walks in Graphs, arXiv preprint arXiv:1302.1176 [math.CO], 2013. - From N. J. A. Sloane, Feb 28 2013
E. Estrada and J. A. de la Pena, Integer sequences from walks in graphs, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 78-84
Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
FORMULA
a(n) = 16*a(n-1) + 3 where a(0)=0.
a(n) = A015521(2n).
a(n) = A112627(2n) for n >= 1; a(0)=0.
G.f.: 3*x / ( (16*x-1)*(x-1) ). - R. J. Mathar, Apr 20 2015
a(n) = 3*A131865(n-1). - R. J. Mathar, Apr 20 2015
a(n) = A108020(n)/4. - Jamie Simpson, Oct 28 2022
MAPLE
seq((16^n-1)/5, n=0..50); # Robert Israel, Jan 22 2016
MATHEMATICA
(16^Range[0, 20]-1)/5 (* Harvey P. Dale, Aug 07 2019 *)
LinearRecurrence[{17, -16}, {0, 3}, 20] (* Harvey P. Dale, Aug 07 2019 *)
PROG
(Magma)[(1/5)*2^(4*i) -(1/5): i in [0..30]];
(PARI) a(n) = (16^n - 1)/5; \\ Michel Marcus, Jan 22 2016
CROSSREFS
Sequence in context: A232453 A248341 A145242 * A075869 A361051 A307369
KEYWORD
nonn,easy,changed
AUTHOR
Brad Clardy, May 03 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 00:46 EST 2024. Contains 370499 sequences. (Running on oeis4.)