login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111885
Row sums of triangle A112492.
2
1, 2, 5, 20, 152, 2542, 100326, 10194844, 2809233510, 2212797607312, 5359196565766782, 39928779843430949176, 1018129474625651322506886, 85890171235256453902613870992, 26477529277143069417959927152215342
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{j=0..n} A112492(n, j), n >= 0.
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, (k+1)^(n-k)*T[n-1, k-1] + k!*T[n-1, k]];
a[n_]:= a[n]= Sum[T[n, k], {k, 0, n}]; (* T = A112492 *)
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jul 24 2023 *)
PROG
(Magma)
T:= func< n, k | (-1)*Factorial(k+1)^(n-k)*(&+[(-1)^j*Binomial(k+1, j)/j^(n-k) : j in [1..k+1]]) >; // T = A112492
A111885:= func< n | (&+[T(n, k): k in [0..n]]) >;
[A111885(n): n in [0..40]]; // G. C. Greubel, Jul 24 2023
(SageMath)
@CachedFunction
def T(n, k): # T = A112492
if (k==0 or k==n): return 1
else: return (k+1)^(n-k)*T(n-1, k-1) + factorial(k)*T(n-1, k)
def A111885(n): return sum(T(n, k) for k in range(n+1))
[A111885(n) for n in range(31)] # G. C. Greubel, Jul 24 2023
CROSSREFS
Cf. A112492.
Sequence in context: A140988 A136650 A229662 * A159320 A184730 A181076
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 12 2005
STATUS
approved