login
A111886
Sixth column of triangle A112492 (inverse scaled Pochhammer symbols).
3
1, 1764, 1942416, 1744835904, 1413470290176, 1083688832185344, 806595068762689536, 590914962115587293184, 429295503918929370218496, 310518802877016005311463424, 224098118280955193084850733056
OFFSET
0,2
COMMENTS
Also continuation of family of differences of reciprocals of unity. See A001242 and triangle A008969.
LINKS
Mircea Merca, Some experiments with complete and elementary symmetric functions, Periodica Mathematica Hungarica, 69 (2014), 182-189.
FORMULA
G.f.: 1/Product_{j=1..6} (1-6!*x/j).
a(n) = -((6!)^n)*Sum_{j=1..6} (-1)^j*binomial(6, j)/j^n, n >= 0.
a(n) = A112492(n+5, 6), n>=0.
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, (k+1)^(n-k)*T[n-1, k-1] +k!*T[n-1, k]]; (* T = A112492 *)
Table[T[n+5, 5], {n, 0, 30}] (* G. C. Greubel, Jul 24 2023 *)
PROG
(PARI) a(n) = -((6!)^n)*sum(j=1, 6, (-1)^j*binomial(6, j)/j^n); \\ Michel Marcus, Apr 28 2020
(Magma)
A111886:= func< n | (-1)*Factorial(6)^n*(&+[(-1)^j*Binomial(6, j)/j^n : j in [1..6]]) >;
[A111886(n): n in [0..30]]; // G. C. Greubel, Jul 24 2023
(SageMath)
@CachedFunction
def T(n, k): # T = A112492
if (k==0 or k==n): return 1
else: return (k+1)^(n-k)*T(n-1, k-1) + factorial(k)*T(n-1, k)
def A111886(n): return T(n+5, 5)
[A111886(n) for n in range(31)] # G. C. Greubel, Jul 24 2023
CROSSREFS
Also right-hand column 5 in triangle A008969.
Sequence in context: A205904 A061627 A232554 * A343989 A343988 A031762
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 12 2005
STATUS
approved