OFFSET
1,3
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.
LINKS
Alois P. Heinz, Rows n = 1..45, flattened
EXAMPLE
Triangle T(n,k) begins:
1;
1, 3;
1, 11, 7;
1, 50, 85, 15;
1, 274, 1660, 575, 31;
1, 1764, 48076, 46760, 3661, 63;
1, 13068, 1942416, 6998824, 1217776, 22631, 127;
1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255;
...
MAPLE
T:= (n, k)-> `if`(k<=n, (n-k+2)!^k *
add((-1)^(j+1)*binomial(n-k+2, j)/ j^k, j=1..n-k+2), 0):
seq(seq(T(n, k), k=0..n), n=0..7); # Alois P. Heinz, Sep 05 2008
MATHEMATICA
T[n_, k_] := If[k <= n, (n-k+2)!^k*Sum[(-1)^(j+1)*Binomial[n-k+2, j]/j^k, {j, 1, n-k+2}], 0]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 7}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved