The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008968 Triangle of distribution of rank sums: Wilcoxon's statistic. 3
 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 5, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 5, 7, 7, 8, 8, 8, 7, 7, 5, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 5, 7, 8, 9, 10, 10, 10, 10, 9, 8, 7, 5, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 12, 13, 12 (list; graph; refs; listen; history; text; internal format)
 OFFSET 6,3 REFERENCES F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 237. LINKS FORMULA Let f(r) = Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-3) / x^((r-2)*(r-3)/2); then expanding f(r) in powers of x and taking coefficients gives the successive rows of this triangle (with a different offset). EXAMPLE Rows begin: {1, 1, 2, 3, 3, 3, 3, 2, 1, 1}, {1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1}, {1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 5, 4, 3, 2, 1, 1}, {1, 1, 2, 3, 4, 5, 7, 7, 8, 8, 8, 7, 7, 5, 4, 3, 2, 1, 1}, ... MATHEMATICA f[r_] := Product[(x^i - x^(r+1))/(1 - x^i), {i, 1, r-3}]/x^((r-2)*(r-3)/2); row[r_] := CoefficientList[ Series[f[r], {x, 0, 3r+1}], x]; Table[row[r], {r, 6, 12}] // Flatten (* Jean-François Alcover, Nov 30 2012 *) CROSSREFS Sequence in context: A097032 A127661 A358617 * A162499 A350857 A135715 Adjacent sequences: A008965 A008966 A008967 * A008969 A008970 A008971 KEYWORD tabf,nonn,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 23:07 EST 2023. Contains 360091 sequences. (Running on oeis4.)