login
A135715
Number of primes of the form p(n)#/p(k) + 1, where 1 <= k <= n.
3
1, 1, 2, 3, 3, 3, 3, 2, 2, 3, 4, 5, 2, 1, 3, 2, 3, 1, 0, 1, 1, 4, 5, 0, 0, 2, 1, 1, 3, 2, 1, 3, 0, 3, 1, 1, 2, 2, 6, 2, 4, 1, 4, 4, 3, 4, 3, 2, 4, 1, 0, 3, 3, 3, 4, 2, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 3, 3, 1, 3, 2, 2, 2, 4, 4, 2, 2, 0, 1, 3, 1, 1, 3, 1, 1, 0, 1, 0, 4, 1, 1, 4, 1, 1, 1, 2, 4, 1, 1, 2, 2, 3, 7, 3
OFFSET
1,3
COMMENTS
p(k) is k-th prime; p(n)# is n-th primorial, A002110(n). For the larger n, these are only counts of highly probable primes. Of the first 500 terms, the maximum occurs once, a(172)=8; the mode is 2, occurring 135 times.
LINKS
EXAMPLE
a(3)=2 because p(3)#=A002110(3)=30 and 30/3+1=11 and 30/5+1=7 are both prime and there are no other primes of this form.
MATHEMATICA
a[n_] := (p = Product[Prime[k], {k, 1, n}]; Sum[Boole[PrimeQ[p/Prime[k] + 1]], {k, 1, n}]); Array[a, 105] (* Jean-François Alcover, Nov 02 2017, translated from PARI *)
PROG
(PARI) a(n)= p=prod(k=1, n, prime(k)); sum(k=1, n, isprime(p/prime(k)+1))
CROSSREFS
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Nov 30 2007
STATUS
approved