OFFSET
1,1
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Mircea Merca, Some experiments with complete and elementary symmetric functions, Periodica Mathematica Hungarica, 69 (2014), 182-189.
FORMULA
a(n) = (n + 1)!^4/480*(20*Psi(n + 2)^4 + 80*gamma*Psi(n + 2)^3 - 120*Psi(n + 2)^2*Psi(1, n + 2) + 20*Pi^2*Psi(n + 2)^2 + 120*gamma^2*Psi(n + 2)^2 - 240*gamma*Psi(n + 2)*Psi(1, n + 2) + 80*Psi(n + 2)*Psi(2, n + 2) + 60*Psi(1, n + 2)^2 + 40*gamma*Pi^2*Psi(n + 2) + 160*Zeta(3)*Psi(n + 2) + 80*gamma^3*Psi(n + 2) - 20*Pi^2*Psi(1, n + 2) - 120*gamma^2*Psi(1, n + 2) + 80*gamma*Psi(2, n + 2) - 20*Psi(3, n + 2) + 160*gamma*Zeta(3) + 3*Pi^4 + 20*gamma^4 + 20*gamma^2*Pi^2). - Vladeta Jovovic, Aug 10 2002
a(n) = (n+1)!^4 * Sum_{i=1..n+1} Sum_{j=1..i} Sum_{k=1..j} Sum_{l=1..k} 1/(ijkl).
a(n) = (n+1)!^4 * Sum_{k=1..n+1} (-1)^(k+1)*C(n+1,k)/k^4. - Sean A. Irvine, Mar 29 2012
MATHEMATICA
a[n_] := -(Factorial[n + 1]^4)*Sum[(-1)^k Binomial[n + 1, k]/k^4, {k, 1, n + 1}]; Table[a[n], {n, 14}] (* James C. McMahon, Dec 12 2023 *)
PROG
(PARI) a(n)=-(n+1)!^4*sum(k=1, n+1, (-1)^k*binomial(n+1, k)/k^4) \\ Charles R Greathouse IV, Mar 29 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Aug 10 2002
a(11)-a(12) from James C. McMahon, Dec 12 2023
STATUS
approved