login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072913 Numerators of (1/4!)*(H(n,1)^4+6*H(n,1)^2*H(n,2)+8*H(n,1)*H(n,3)+3*H(n,2)^2+6*H(n,4)), where H(n,m) = Sum_{i=1..n} 1/i^m are generalized harmonic numbers. 2
1, 31, 3661, 76111, 58067611, 68165041, 187059457981, 3355156783231, 300222042894631, 327873266234371, 5194481903600608411, 5578681466128739761, 170044702211669500782121, 180514164422163370751221 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is also the numerator of binomial transform of (-1)^n/(n+1)^5

LINKS

Table of n, a(n) for n=1..14.

Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.

FORMULA

Numerators of 1/4!*((gamma+Psi(n+1))^4+6*(gamma+Psi(n+1))^2*(1/6*Pi^2-Psi(1, n+1))+8*(gamma+Psi(n+1))*(Zeta(3)+1/2*Psi(2, n+1))+3*(1/6*Pi^2-Psi(1, n+1))^2+6*(1/90*Pi^4-1/6*Psi(3, n+1))).

For n>=1, H(n,1)^4+6*H(n,1)^2*H(n,2)+8*H(n,1)*H(n,3)+3*H(n,2)^2+6*H(n,4)=integral(x^(n-1)*(log(1-x))^4 dx, x=0..1)

PROG

(PARI) x(n)=sum(k=1, n, 1/k); y(n)=sum(k=1, n, 1/k^2); z(n)=sum(k=1, n, 1/k^3); w(n)=sum(k=1, n, 1/k^4); a(n)=numerator(1/4!*(x(n)^4+6*x(n)^2*y(n)+8*x(n)*z(n)+3*y(n)^2+6*w(n)))

CROSSREFS

Cf. A027459, A027462, A072914.

Sequence in context: A330398 A218661 A183783 * A001237 A289397 A177465

Adjacent sequences:  A072910 A072911 A072912 * A072914 A072915 A072916

KEYWORD

easy,nonn,frac

AUTHOR

Vladeta Jovovic, Aug 10 2002

EXTENSIONS

More terms from Benoit Cloitre, Aug 13 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 02:12 EST 2021. Contains 349435 sequences. (Running on oeis4.)