login
A072193
Concatenate continued fraction expansions of the rational numbers 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, 1/5, 2/5, ...
2
2, 3, 1, 2, 4, 2, 1, 3, 5, 2, 2, 1, 1, 2, 1, 4, 6, 3, 2, 1, 2, 1, 5, 7, 3, 2, 2, 3, 1, 1, 3, 1, 2, 2, 1, 6, 8, 4, 2, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 7, 9, 4, 2, 3, 2, 4, 1, 1, 4, 1, 2, 1, 3, 2, 1, 8, 10, 5, 3, 3, 2, 2, 2, 1, 1, 2, 1, 2, 3, 1, 4, 1, 9, 11, 5, 2, 3, 1, 2, 2, 1, 3, 2, 5, 1, 1, 5, 1, 1, 1, 3, 1, 2
OFFSET
0,1
COMMENTS
Leading zeros in continued fraction omitted.
REFERENCES
K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Math. Assoc. America, 2002, p. 72.
LINKS
EXAMPLE
Table starts
2
3
1 2
4
2
1 3
5
2 2
1 1 2. - Robert Israel, Sep 18 2015
MAPLE
seq(seq(op(cfrac(i/j, 'quotients')[2..-1]), i=1..j-1), j=2..20); # Robert Israel, Sep 18 2015
MATHEMATICA
Table[Rest@ ContinuedFraction[k/n], {n, 2, 11}, {k, n - 1}] // Flatten (* Michael De Vlieger, Sep 18 2015 *)
PROG
(PARI) {m=11; for(i=2, m, for(j=1, i-1, c=contfrac(j/i); for(k=2, matsize(c)[2], print1(c[k], ", "))))}
CROSSREFS
Sequence in context: A344089 A329631 A239304 * A233359 A279345 A097966
KEYWORD
nonn,easy,tabf
AUTHOR
N. J. A. Sloane, Nov 10 2002
EXTENSIONS
Extended by Klaus Brockhaus and Vladeta Jovovic, Nov 13 2002
STATUS
approved