login
A097966
Rectangular array read by rows (n > 0, 1 <= k <= 3): T(n,k) = floor(b(n,k)/6^(2*(A002264(n) + 1)/3)), where b(n,k) = b(n-3,k) + 13*b (n-6,k) + 36*b(n-9,k), with initial values given in comments.
1
1, 2, 3, 1, 2, 4, 2, 3, 4, 1, 3, 4, 2, 4, 6, 2, 5, 6, 3, 5, 7, 3, 7, 9, 4, 7, 10, 4, 8, 11, 6, 10, 14, 6, 11, 15, 7, 12, 17, 9, 16, 22, 10, 17, 23, 11, 19, 26, 14, 24, 33, 15, 26, 36, 17, 29, 40, 21, 37, 51, 23, 40, 55, 26, 45, 62, 33, 57, 77, 35, 61, 83
OFFSET
1,2
COMMENTS
From Franck Maminirina Ramaharo, Nov 08 2018: (Start)
The initial values for b(n,k), 1 <= n <= 9, 1 <= k <= 3, are
n\k | 1 2 3
----+---------------
1 | 16 32 36
2 | 17 30 44
3 | 24 36 51
4 | 68 120 176
5 | 105 170 233
6 | 99 186 240
7 | 420 680 932
8 | 470 848 1129
9 | 519 870 1227. (End)
FORMULA
From Franck Maminirina Ramaharo, Nov 08 2018: (Start)
Let M and A denote the following 3 X 3 matrices:
0, 4, 0
M = 1, 1, 3
3, 3, 0
and
0, 1, 1
A = 1, 1, 2
1, 2, 2.
Then applying floor() to the entries in (h*M)^(n + 1)*A, where h = 1/(6^(2/3)), yields row 3*n - 2 to 3*n. (End)
EXAMPLE
Triangle begins:
1, 2, 3;
1, 2, 4;
2, 3, 4;
1, 3, 4;
2, 4, 6;
2, 5, 6;
3, 5, 7;
3, 7, 9;
4, 7, 10;
4, 8, 11;
6, 10, 14;
6, 11, 15;
... - Franck Maminirina Ramaharo, Nov 08 2018
MATHEMATICA
M = N[(16/9)^(1/3)*({{0, 1, 0}, {1, 1, 0}, {0, 0, 0}}*(1/4) + {{0, 1, 0}, {0, 0, 1}, {1, 1, 0}}*(3/4))];
A[n_] := M.A[n - 1]; A[0] := {{0, 1, 1}, {1, 1, 2}, {1, 2, 2}};
Table[Floor[M.A[n]], {n, 1, 12}]//Flatten
CROSSREFS
Cf. A097964.
Sequence in context: A072193 A233359 A279345 * A177993 A256990 A071503
KEYWORD
nonn,tabf,less
AUTHOR
Roger L. Bagula, Sep 06 2004
EXTENSIONS
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Nov 08 2018
STATUS
approved