login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072914
Denominators of 1/4!*(H(n,1)^4+6*H(n,1)^2*H(n,2)+8*H(n,1)*H(n,3)+3*H(n,2)^2+6*H(n,4)), where H(n,m) = Sum_{i=1..n} 1/i^m are generalized harmonic numbers.
1
1, 16, 1296, 20736, 12960000, 12960000, 31116960000, 497871360000, 40327580160000, 40327580160000, 590436101122560000, 590436101122560000, 16863445484161436160000, 16863445484161436160000
OFFSET
1,2
COMMENTS
a(n) = A007480 (n) for n=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 51, 52, 53, 54, 110, 111, 112, 113, 114, 115, 116...... - Benoit Cloitre, Aug 13 2002
FORMULA
Denominators of 1/4!*((gamma+Psi(n+1))^4+6*(gamma+Psi(n+1))^2*(1/6*Pi^2-Psi(1, n+1))+8*(gamma+Psi(n+1))*(Zeta(3)+1/2*Psi(2, n+1))+3*(1/6*Pi^2-Psi(1, n+1))^2+6*(1/90*Pi^4-1/6*Psi(3, n+1))).
PROG
(PARI) x(n)=sum(k=1, n, 1/k); y(n)=sum(k=1, n, 1/k^2); z(n)=sum(k=1, n, 1/k^3); w(n)=sum(k=1, n, 1/k^4); a(n)=denominator(1/4!*(x(n)^4+6*x(n)^2*y(n)+8*x(n)*z(n)+3*y(n)^2+6*w(n)))
CROSSREFS
Cf. A072913.
Sequence in context: A248619 A334585 A163929 * A007480 A369169 A307814
KEYWORD
easy,nonn,frac
AUTHOR
Vladeta Jovovic, Aug 10 2002
EXTENSIONS
More terms from Benoit Cloitre, Aug 13 2002
STATUS
approved