login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072913 Numerators of (1/4!)*(H(n,1)^4+6*H(n,1)^2*H(n,2)+8*H(n,1)*H(n,3)+3*H(n,2)^2+6*H(n,4)), where H(n,m) = Sum_{i=1..n} 1/i^m are generalized harmonic numbers. 2

%I #19 Jul 11 2015 17:30:41

%S 1,31,3661,76111,58067611,68165041,187059457981,3355156783231,

%T 300222042894631,327873266234371,5194481903600608411,

%U 5578681466128739761,170044702211669500782121,180514164422163370751221

%N Numerators of (1/4!)*(H(n,1)^4+6*H(n,1)^2*H(n,2)+8*H(n,1)*H(n,3)+3*H(n,2)^2+6*H(n,4)), where H(n,m) = Sum_{i=1..n} 1/i^m are generalized harmonic numbers.

%C a(n) is also the numerator of binomial transform of (-1)^n/(n+1)^5

%H Jerry Metzger and Thomas Richards, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Metzger/metz1.html">A Prisoner Problem Variation</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.

%F Numerators of 1/4!*((gamma+Psi(n+1))^4+6*(gamma+Psi(n+1))^2*(1/6*Pi^2-Psi(1, n+1))+8*(gamma+Psi(n+1))*(Zeta(3)+1/2*Psi(2, n+1))+3*(1/6*Pi^2-Psi(1, n+1))^2+6*(1/90*Pi^4-1/6*Psi(3, n+1))).

%F For n>=1, H(n,1)^4+6*H(n,1)^2*H(n,2)+8*H(n,1)*H(n,3)+3*H(n,2)^2+6*H(n,4)=integral(x^(n-1)*(log(1-x))^4 dx, x=0..1)

%o (PARI) x(n)=sum(k=1,n,1/k); y(n)=sum(k=1,n,1/k^2); z(n)=sum(k=1,n,1/k^3); w(n)=sum(k=1,n,1/k^4); a(n)=numerator(1/4!*(x(n)^4+6*x(n)^2*y(n)+8*x(n)*z(n)+3*y(n)^2+6*w(n)))

%Y Cf. A027459, A027462, A072914.

%K easy,nonn,frac

%O 1,2

%A _Vladeta Jovovic_, Aug 10 2002

%E More terms from _Benoit Cloitre_, Aug 13 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 16:45 EDT 2024. Contains 371989 sequences. (Running on oeis4.)