login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of differences of reciprocals of unity.
16

%I #20 Oct 21 2021 21:14:59

%S 1,1,3,1,11,7,1,50,85,15,1,274,1660,575,31,1,1764,48076,46760,3661,63,

%T 1,13068,1942416,6998824,1217776,22631,127,1,109584,104587344,

%U 1744835904,929081776,30480800,137845,255,1,1026576,7245893376,673781602752,1413470290176,117550462624,747497920,833375,511

%N Triangle of differences of reciprocals of unity.

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.

%H Alois P. Heinz, <a href="/A008969/b008969.txt">Rows n = 1..45, flattened</a>

%e Triangle T(n,k) begins:

%e 1;

%e 1, 3;

%e 1, 11, 7;

%e 1, 50, 85, 15;

%e 1, 274, 1660, 575, 31;

%e 1, 1764, 48076, 46760, 3661, 63;

%e 1, 13068, 1942416, 6998824, 1217776, 22631, 127;

%e 1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255;

%e ...

%p T:= (n,k)-> `if`(k<=n, (n-k+2)!^k *

%p add((-1)^(j+1)*binomial(n-k+2, j)/ j^k, j=1..n-k+2), 0):

%p seq(seq(T(n,k), k=0..n), n=0..7); # _Alois P. Heinz_, Sep 05 2008

%t T[n_, k_] := If[k <= n, (n-k+2)!^k*Sum[(-1)^(j+1)*Binomial[n-k+2, j]/j^k, {j, 1, n-k+2}], 0]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 7}] // Flatten (* _Jean-François Alcover_, Mar 10 2014, after _Alois P. Heinz_ *)

%Y Cf. A001236, A001237, A001238, A001240, A001241, A001242.

%Y Columns include A000254, A000424, A001236, A001237, A001238. Right-hand columns include A000225, A001240, A001241, A001242.

%K nonn,tabl

%O 1,3

%A _N. J. A. Sloane_.