login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228534
Triangular array read by rows: T(n,k) is the number of functional digraphs on {1,2,...,n} such that every element is mapped to a recurrent element and there are exactly k cycles, n>=1, 1<=k<=n.
1
1, 3, 1, 11, 9, 1, 58, 71, 18, 1, 409, 620, 245, 30, 1, 3606, 6274, 3255, 625, 45, 1, 38149, 73339, 45724, 11795, 1330, 63, 1, 470856, 977780, 697004, 221529, 33880, 2506, 84, 1, 6641793, 14678712, 11602394, 4309956, 823179, 82908, 4326, 108, 1
OFFSET
1,2
COMMENTS
The Bell transform of (-1)^n*A009444(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
LINKS
FORMULA
E.g.f.: 1/(1 - x*exp(x))^y.
EXAMPLE
1;
3, 1;
11, 9, 1;
58, 71, 18, 1;
409, 620, 245, 30, 1;
3606, 6274, 3255, 625, 45, 1;
38149, 73339, 45724, 11795, 1330, 63, 1;
470856, 977780, 697004, 221529, 33880, 2506, 84, 1;
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
g := n -> add(m^(n-m)*m!*binomial(n+1, m), m=1..n+1);
BellMatrix(g, 9); # Peter Luschny, Jan 29 2016
MATHEMATICA
nn = 8; a = x Exp[x];
Map[Select[#, # > 0 &] &,
Drop[Range[0, nn]! CoefficientList[
Series[1/(1 - a)^y, {x, 0, nn}], {x, y}], 1]] // Grid
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, (n+1)! Sum[m^(n-m)/(n-m+1)!, {m, 1, n+1}]], rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
PROG
(Sage) # uses[bell_matrix from A264428, A009444]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
bell_matrix(lambda n: (-1)^n*A009444(n+1), 10) # Peter Luschny, Jan 18 2016
CROSSREFS
Row sums = A006153.
Column 1 = |A009444|.
Cf. A199673.
Sequence in context: A135574 A008969 A199577 * A119908 A362996 A153257
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Aug 24 2013
STATUS
approved