login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009444
E.g.f. log(1 + x*exp(-x)).
13
0, 1, -3, 11, -58, 409, -3606, 38149, -470856, 6641793, -105398650, 1858413061, -36044759796, 762659322385, -17481598316742, 431535346662645, -11413394655983536, 321989729198400385, -9651573930139850610
OFFSET
0,3
COMMENTS
abs(a(n)) is the number of connected functions f:{1,2,...,n}->{1,2,...,n} such that every element is mapped into a recurrent element. Cf. A006153. - Geoffrey Critzer, May 24 2012
LINKS
FORMULA
abs(a(n)) is asymptotic to (n-1)!/LambertW(1)^n. - Vladeta Jovovic, Jul 12 2007
Sequence of absolute values has e.g.f. log(1/(1-x*exp(x))). - Joerg Arndt, Apr 30 2011
a(n) = (-1)^(n+1)*n!*sum(m=1..n, m^(n-m-1)/(n-m)!). - Vladimir Kruchinin, Oct 08 2011
a(n) = (-1)^(n + 1) * n + Sum_{k=1..n-1} (-1)^(n - k) * binomial(n-1,k-1) * (n - k) * a(k). - Ilya Gutkovskiy, Jan 17 2020
MATHEMATICA
With[{nmax = 40}, CoefficientList[Series[Log[1 + x*Exp[-x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 22 2017 *)
PROG
(PARI) x='x+O('x^66); /* that many terms */
egf=1/(1+x/exp(x)); /* = 1 - x + 2*x^2 - 7/2*x^3 + 37/6*x^4 - 87/8*x^5 +... */
Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, Apr 30 2011 */
(Maxima)
a(n):=(-1)^(n+1)*n!*sum(m^(n-m-1)/(n-m)!, m, 1, n); /* Vladimir Kruchinin, Oct 08 2011 */
(Sage)
A009444 = lambda n: (-1)^(n+1)*factorial(n)*sum(m^(n-m-1)/factorial(n-m) for m in (1..n))
[A009444(n) for n in (0..9)] # Peter Luschny, Jan 18 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Definition corrected by Joerg Arndt, Apr 30 2011
STATUS
approved