OFFSET
0,2
EXAMPLE
The triangle T(n, k) begins:
[0] 1;
[1] 3, 1;
[2] 11, 14, 3;
[3] 25, 46, 117, 16;
[4] 137, 652, 3699, 1344, 125;
[5] 49, 568, 19197, 41728, 19375, 1296;
[6] 363, 9872, 621837, 2397184, 2084375, 334368, 16807;
[7] 761, 23664, 5338467, 17115136, 99109375, 7150032, 6705993, 262144;
.
The first few polynomials are:
[0] 1
[1] x + 3/2
[2] 3*x^2 + (14/3)*x + 11/6
[3] 16*x^3 + (117/4)*x^2 + (46/3)*x + 25/12
[4] 125*x^4 + (1344/5)*x^3 + (3699/20)*x^2 + (652/15)*x + 137/60
[5] 1296*x^5 + (19375/6)*x^4 + (41728/15)*x^3 + (19197/20)*x^2 + (568/5)*x + 49/20
PROG
(SageMath)
def R(n, k, x):
return add((1 / (u + 1)) * add(x^j * binomial(u, j) * (j + 1)^n
for j in (0..u)) for u in (0..k))
def A362996row(n: int) -> list[int]:
return [r.numerator() for r in R(n, n, x).list()]
for n in (0..7): print(A362996row(n))
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, May 13 2023
STATUS
approved