login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362997
Triangle read by rows. T(n, k) = denominator([x^k] R(n, n, x)), where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).
2
1, 2, 1, 6, 3, 1, 12, 3, 4, 1, 60, 15, 20, 5, 1, 20, 5, 20, 15, 6, 1, 140, 35, 140, 105, 42, 7, 1, 280, 35, 280, 105, 168, 7, 8, 1, 2520, 315, 280, 315, 504, 7, 72, 9, 1, 2520, 315, 280, 315, 504, 35, 360, 45, 10, 1, 27720, 3465, 3080, 3465, 5544, 385, 3960, 495, 110, 11, 1
OFFSET
0,2
FORMULA
T(n, k) = lcm(1, 2, ..., n+1) * A362996(n, k) / A362995(n, k).
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 2, 1;
[2] 6, 3, 1;
[3] 12, 3, 4, 1;
[4] 60, 15, 20, 5, 1;
[5] 20, 5, 20, 15, 6, 1;
[6] 140, 35, 140, 105, 42, 7, 1;
[7] 280, 35, 280, 105, 168, 7, 8, 1;
[8] 2520, 315, 280, 315, 504, 7, 72, 9, 1;
[9] 2520, 315, 280, 315, 504, 35, 360, 45, 10, 1;
PROG
(SageMath)
def R(n, k, x):
return add((1 / (u + 1)) * add(x^j * binomial(u, j) * (j + 1)^n
for j in (0..u)) for u in (0..k))
def A362997row(n: int) -> list[int]:
return [r.denominator() for r in R(n, n, x).list()]
for n in (0..9): print(A362997row(n))
CROSSREFS
Cf. A362996 (numerator), A002805 (column 0), A362995.
Sequence in context: A016545 A142977 A356601 * A120108 A350292 A060556
KEYWORD
nonn,tabl,frac
AUTHOR
Peter Luschny, May 13 2023
STATUS
approved