OFFSET
0,3
COMMENTS
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
FORMULA
T(n,k) = Sum_{j = 0..k} C(2*n, k-j)*C(2*n+j+1, j).
O.g.f.: 1/{(1 - x)^2 - y*(1 + x)^2} = Sum_{n, k >= 0} T(n,k)*x^k*y^n = 1/(1 - y) * Sum_{m >= 0} U(m, (1 + y)/(1 - y))*x^m, where U(m, y) denotes the m-th Chebyshev polynomial of the second kind.
O.g.f. row n: (1 + x)^(2*n)/(1 - x)^(2*n+2).
O.g.f. column k: 1/(1 - y)*U(k, (1 + y)/(1 - y)).
The entries in the n-th row appear in the series acceleration formula for the constant log(2): Sum_{k >= 1} (-1)^(k+1)/(T(n,k)*T(n,k+1)) = 1 + (4*n + 2)*( log(2) - (1 - 1/2 + 1/3 - ... + 1/(2*n + 1)) ).
For example, n = 1 gives log(2) = 4/6 + (1/6)*( 1/(1*6) - 1/(6*19) + 1/(19*44) - 1/(44*85) + ... ). See A142983 for further details.
EXAMPLE
The square array begins
n\k| 0...1....2.....3.....4.......5
------------------------------------
.0.| 1...2....3.....4......5......6 ... A000027
.1.| 1...6...19....44.....85....146 ... A005900
.2.| 1..10...51...180....501...1182 ... A069038
.3.| 1..14...99...476...1765...5418 ... A099193
.4.| 1..18..163...996...4645..17718 ... A099196
.5.| 1..22..243..1804..10165..46530 ... A300624
...
MAPLE
with(combinat): T:=(n, k) -> add(binomial(2n, k-j)*binomial(2n+j+1, j), j = 0..k): for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Jul 15 2008
EXTENSIONS
Restored missing program. - Peter Bala, Oct 02 2008
STATUS
approved