login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A142980 a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1) + (n + 1)^2*a(n). 4
1, 5, 29, 190, 1414, 11820, 110004, 1129200, 12686256, 154896480, 2043108000, 28958014080, 438997622400, 7088892491520, 121487996448000, 2202440792832000, 42113131054848000, 847071044402688000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is the case m = 2 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n), which arises when accelerating the convergence of Mercator's series for the constant log(2). See A142979 for remarks on the general case.
LINKS
FORMULA
a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = 2*n^2 + 2*n + 1 = A001844(n) is the Ehrhart polynomial for the 2-dimensional cross polytope (a square).
Recurrence: a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1) + (n+1)^2*a(n).
The sequence b(n) := n!*p(n) satisfies the same recurrence with b(1) = 5, b(2) = 26.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5 + 1^2/(5 + 2^2/(5 + 3^2/(5 + ... + (n-1)^2/5)))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = 1/(5 + 1^2/(5 + 2^2/(5 + 3^2/(5 + ... + n^2/(5 + ...))))) = Sum_{k >= 1} (-1)^(k+1)/(k*(4*k^4 + 1)) = log(2) - (1 - 1/2); the final equality is a result of Glaisher.
Thus a(n) ~ c*n^2*n! as n -> oo, where c = 2*log(2) - 1.
MAPLE
p := n -> 2*n^2+ 2*n+1: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)
CROSSREFS
Sequence in context: A367232 A078945 A113713 * A062191 A367240 A171267
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Jul 17 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 20:11 EDT 2024. Contains 375173 sequences. (Running on oeis4.)