login
A142981
a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1) + (n+1)^2*a(n).
4
1, 7, 53, 434, 3886, 38052, 406260, 4708368, 58959216, 794092320, 11454567840, 176267145600, 2883327788160, 49972442123520, 914939341344000, 17648374867200000, 357763095454464000, 7604722004802048000
OFFSET
1,2
COMMENTS
This is the case m = 3 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n), which arises when accelerating the convergence of Mercator's series for the constant log(2). See A142979 for remarks on the general case.
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
LINKS
FORMULA
a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = (4*n^3 + 6*n^2 + 8*n + 3)/3 = A001845(n) is the Ehrhart polynomial for the 3-dimensional cross polytope (the octahedron).
Recurrence: a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1) + (n + 1)^2*a(n). The sequence b(n):= n!*p(n) satisfies the same recurrence with b(1) = 7, b(2) = 50.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(7 + 1^2/(7 + 2^2/(7 + 3^2/(7 + ... + (n-1)^2/7)))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k*p(k-1)*p(k)) = 1/(7 + 1^2/(7 + 2^2/(7 + 3^2/(7 + ... + n^2/(7 + ...))))) = (1 - 1/2 + 1/3) - log(2); the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 29]). Thus a(n) ~ c*n^3*n! as n -> oo, where c = (10 - 12*log(2))/9.
MAPLE
p := n -> (4*n^3+6*n^2+8*n+3)/3: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Jul 17 2008
STATUS
approved