login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163306
a(n) = 12*a(n-1) - 31*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
2
1, 7, 53, 419, 3385, 27631, 226637, 1863083, 15331249, 126219415, 1039364261, 8559569267, 70494539113, 580587822079, 4781723152445, 39382455344891, 324356046412897, 2671416441263143, 22001959856357909, 181209608597137475
OFFSET
0,2
COMMENTS
Binomial transform of A090041. Inverse binomial transform of A163307.
FORMULA
a(n) = ((5+sqrt(5))*(6+sqrt(5))^n + (5-sqrt(5))*(6-sqrt(5))^n)/10.
G.f.: (1-5*x)/(1-12*x+31*x^2).
E.g.f.: (1/5)*exp(6*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)). - G. C. Greubel, Dec 18 2016
MATHEMATICA
LinearRecurrence[{12, -31}, {1, 7}, 50] (* G. C. Greubel, Dec 18 2016 *)
PROG
(Magma) [ n le 2 select 6*n-5 else 12*Self(n-1)-31*Self(n-2): n in [1..20] ];
(PARI) Vec((1-5*x)/(1-12*x+31*x^2) + O(x^50)) \\ G. C. Greubel, Dec 18 2016
CROSSREFS
Sequence in context: A279269 A015561 A133588 * A081338 A367937 A142981
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jul 24 2009
STATUS
approved