login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A078945
Row sums of A078939.
23
1, 5, 29, 189, 1357, 10589, 88909, 797085, 7583373, 76179037, 804638925, 8904557341, 102929260813, 1239432543709, 15511264432973, 201330839371421, 2705249923950477, 37567754666530141, 538369104335121869
OFFSET
0,2
COMMENTS
Equals A078944(n+1)/4.
LINKS
FORMULA
E.g.f.: exp(4*(exp(x)-1)+x).
Stirling transform of [1, 4, 4^2, 4^3, ...]. - Gerald McGarvey, Jun 01 2005
Define f_1(x), f_2(x), ... such that f_1(x)=e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n)=e^{-4}*f_n(4). - Milan Janjic, May 30 2008
G.f.: 1/(Q(0) - 4*x) where Q(k) = 1 - x*(k+1)/( 1 - 4*x/Q(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 22 2013
G.f.: T(0)/(1-5*x), where T(k) = 1 - 4*x^2*(k+1)/( 4*x^2*(k+1) - (1-5*x-x*k)*(1-6*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 28 2013
a(n) = exp(-4) * Sum_{k>=0} (k + 1)^n * 4^k / k!. - Ilya Gutkovskiy, Apr 20 2020
a(n) ~ n^(n+1) * exp(n/LambertW(n/4) - n - 4) / (4 * sqrt(1 + LambertW(n/4)) * LambertW(n/4)^(n+1)). - Vaclav Kotesovec, Jun 26 2022
a(0) = 1; a(n) = a(n-1) + 4 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Dec 05 2023
MAPLE
A078945 := proc(n) local a, b, i;
a := [seq(2, i=1..n)]; b := [seq(1, i=1..n)];
exp(-x)*hypergeom(a, b, x); round(evalf(subs(x=4, %), 66)) end:
seq(A078945(n), n=0..18); # Peter Luschny, Mar 30 2011
MATHEMATICA
Table[n!, {n, 0, 20}]CoefficientList[Series[E^(4E^x-4+x), {x, 0, 20}], x]
Table[1/E^4/4*Sum[m^n/m!*4^m, {m, 0, Infinity}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 12 2014 *)
Table[BellB[n+1, 4]/4, {n, 0, 20}] (* Vaclav Kotesovec, Jun 26 2022 *)
CROSSREFS
Column k=4 of A335975.
Sequence in context: A234317 A346845 A367232 * A113713 A142980 A062191
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 18 2002
EXTENSIONS
More terms from Robert G. Wilson v, Dec 19 2002
STATUS
approved