The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078945 Row sums of A078939. 23
 1, 5, 29, 189, 1357, 10589, 88909, 797085, 7583373, 76179037, 804638925, 8904557341, 102929260813, 1239432543709, 15511264432973, 201330839371421, 2705249923950477, 37567754666530141, 538369104335121869 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Equals A078944(n+1)/4. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA E.g.f.: exp(4*(exp(x)-1)+x). Stirling transform of [1, 4, 4^2, 4^3, ...]. - Gerald McGarvey, Jun 01 2005 Define f_1(x), f_2(x), ... such that f_1(x)=e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n)=e^{-4}*f_n(4). - Milan Janjic, May 30 2008 G.f.: 1/(Q(0) - 4*x) where Q(k) = 1 - x*(k+1)/( 1 - 4*x/Q(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 22 2013 G.f.: T(0)/(1-5*x), where T(k) = 1 - 4*x^2*(k+1)/( 4*x^2*(k+1) - (1-5*x-x*k)*(1-6*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 28 2013 a(n) = exp(-4) * Sum_{k>=0} (k + 1)^n * 4^k / k!. - Ilya Gutkovskiy, Apr 20 2020 a(n) ~ n^(n+1) * exp(n/LambertW(n/4) - n - 4) / (4 * sqrt(1 + LambertW(n/4)) * LambertW(n/4)^(n+1)). - Vaclav Kotesovec, Jun 26 2022 a(0) = 1; a(n) = a(n-1) + 4 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Dec 05 2023 MAPLE A078945 := proc(n) local a, b, i; a := [seq(2, i=1..n)]; b := [seq(1, i=1..n)]; exp(-x)*hypergeom(a, b, x); round(evalf(subs(x=4, %), 66)) end: seq(A078945(n), n=0..18); # Peter Luschny, Mar 30 2011 MATHEMATICA Table[n!, {n, 0, 20}]CoefficientList[Series[E^(4E^x-4+x), {x, 0, 20}], x] Table[1/E^4/4*Sum[m^n/m!*4^m, {m, 0, Infinity}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 12 2014 *) Table[BellB[n+1, 4]/4, {n, 0, 20}] (* Vaclav Kotesovec, Jun 26 2022 *) CROSSREFS Column k=4 of A335975. Cf. A078939, A078944, A000110, A035009, A078940. Sequence in context: A234317 A346845 A367232 * A113713 A142980 A062191 Adjacent sequences: A078942 A078943 A078944 * A078946 A078947 A078948 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 18 2002 EXTENSIONS More terms from Robert G. Wilson v, Dec 19 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 09:30 EDT 2024. Contains 375044 sequences. (Running on oeis4.)