

A078948


Primes p such that the differences between the 5 consecutive primes starting with p are (2,6,4,2).


2



29, 59, 269, 1289, 2129, 2789, 5639, 8999, 13679, 14549, 18119, 36779, 62129, 75989, 80669, 83219, 88799, 93479, 113159, 115769, 124769, 132749, 150209, 160079, 163979, 203309, 207509, 223829, 228509, 278489, 282089, 284729, 298679
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Equivalently, p, p+2, p+8, p+12 and p+14 are consecutive primes.
Subsequence of A078848.  R. J. Mathar, Feb 10 2013
All terms are congruent to 29 (mod 30).  Muniru A Asiru, Sep 04 2017


LINKS

R. J. Mathar, Table of n, a(n) for n = 1..1000
R. J. Mathar, Table of Prime Gap Constellations


EXAMPLE

59 is in the sequence since 59, 61, 67, 71 and 73 are consecutive primes.


MAPLE

for i from 1 to 10^5 do if [ithprime(i+1), ithprime(i+2), ithprime(i+3), ithprime(i+4)] = [ithprime(i)+2, ithprime(i)+8, ithprime(i)+12, ithprime(i)+14] then print(ithprime(i)); fi; od; # Muniru A Asiru, Sep 04 2017


PROG

(GAP)
K:=26*10^7+1;; # to get all terms <= K.
P:=Filtered([1, 3..K], IsPrime);; I:=[2, 6, 4, 2];;
P1:=List([1..Length(P)1], i>P[i+1]P[i]);;
Q:=List(Positions(List([1..Length(P)Length(I)], i>[P1[i], P1[i+1], P1[i+2], P1[i+3]]), I), i>P[i]); # Muniru A Asiru, Sep 04 2017


CROSSREFS

Cf. A001223, A078866, A078867, A078946A078971, A022006, A022007.
Sequence in context: A196940 A104119 A042674 * A269263 A042676 A124643
Adjacent sequences: A078945 A078946 A078947 * A078949 A078950 A078951


KEYWORD

nonn


AUTHOR

Labos Elemer, Dec 19 2002


EXTENSIONS

Edited by Dean Hickerson, Dec 20 2002


STATUS

approved



