login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078971
Numbers n such that C(4n,n)/(3n+1) (A002293) is not divisible by 4.
25
0, 1, 3, 5, 11, 13, 21, 43, 45, 53, 85, 171, 173, 181, 213, 341, 683, 685, 693, 725, 853, 1365, 2731, 2733, 2741, 2773, 2901, 3413, 5461, 10923, 10925, 10933, 10965, 11093, 11605, 13653, 21845, 43691, 43693, 43701, 43733, 43861, 44373, 46421, 54613
OFFSET
1,3
COMMENTS
Stanica observes that the sequence in binary forms a pattern where 1 bits are inserted into the word 1010101...:
1 11
101 1011 1101
10101 101011 101101 110101
1010101 10101011 10101101 10110101 11010101...
LINKS
P. Stanica, p^q Catalan numbers and squarefree binomial coefficients, arXiv:math/0010148 [math.NT], 2000.
MATHEMATICA
Select[ Range[0, 65000], Mod[ Binomial[4#, # ]/(3# + 1), 4] != 0 &] (* Robert G. Wilson v, Oct 12 2005 *)
PROG
(PARI) isok(n) = binomial(4*n, n)/(3*n+1) % 4; \\ Michel Marcus, Apr 16 2015
(Magma) [n: n in [0..2*10^4] | not IsZero(Binomial(4*n, n) div (3*n+1) mod 4)]; // Vincenzo Librandi, Apr 16 2015
(Python)
from __future__ import division
A078971_list = []
for t in range(100):
A078971_list.append((2**(2*t)-1)//3)
for j in range(t):
A078971_list.append((2**(2*t+1)+2**(2*j+1)-1)//3) # Chai Wah Wu, Mar 06 2016
CROSSREFS
Cf. A000225 (C(2n, n)/(n+1) is not divisible by 2), A003462 (C(3n, n)/(2n+1) is not divisible by 3), A003463 (C(5n, n)/(4n+1) is not divisible by 5).
Sequence in context: A207325 A295243 A179017 * A266723 A129096 A079448
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 14 2003
EXTENSIONS
Comments and more terms from Ralf Stephan, Oct 30 2003
a(28)-a(44) from Robert G. Wilson v, Oct 12 2005
STATUS
approved