

A295243


Sums of two numbers that are both consecutive and squarefree.


1



3, 5, 11, 13, 21, 27, 29, 43, 45, 59, 61, 67, 69, 75, 77, 83, 85, 93, 115, 117, 123, 131, 133, 139, 141, 147, 155, 157, 165, 171, 173, 187, 189, 203, 205, 211, 213, 219, 221, 227, 229, 237, 245, 259, 261, 267, 275, 277, 283, 285, 291, 309, 315, 317, 331
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

From Robert Israel, Nov 20 2017: (Start)
All terms == 3 or 5 (mod 8).
Odd numbers n such that (n1)/2 and (n+1)/2 are both squarefree.
Intersection of 2*A005117+1 and 2*A0051171. (End)


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


EXAMPLE

a(3) = 11; 11 = 5 + 6, with 5, 6 consecutive and squarefree.


MAPLE

with(numtheory): a:=n>`if`(mobius(n)^2 = 1 and mobius(n+1)^2=1, 2*n+1, NULL): seq(a(n), n=1..300);


MATHEMATICA

Total /@ Select[Partition[Range@ 166, 2, 1], AllTrue[#, SquareFreeQ] &] (* Michael De Vlieger, Nov 18 2017 *)


PROG

(PARI) lista(nn) = for (n=0, nn, if (issquarefree(n) && issquarefree(n+1), print1(2*n+1, ", ")); ); \\ Michel Marcus, Nov 19 2017


CROSSREFS

Cf. A005117.
Sequence in context: A329760 A156221 A207325 * A179017 A078971 A266723
Adjacent sequences: A295240 A295241 A295242 * A295244 A295245 A295246


KEYWORD

nonn


AUTHOR

Wesley Ivan Hurt, Nov 18 2017


STATUS

approved



