This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078972 Brilliant numbers: semiprimes (products of two primes, A001358) whose prime factors have the same number of decimal digits. 77
 4, 6, 9, 10, 14, 15, 21, 25, 35, 49, 121, 143, 169, 187, 209, 221, 247, 253, 289, 299, 319, 323, 341, 361, 377, 391, 403, 407, 437, 451, 473, 481, 493, 517, 527, 529, 533, 551, 559, 583, 589, 611, 629, 649, 667, 671, 689, 697, 703, 713, 731, 737, 767, 779, 781 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS "Brilliant numbers, as defined by Peter Wallrodt, are numbers with two prime factors of the same length (in decimal notation). These numbers are generally used for cryptographic purposes and for testing the performance of prime factoring programs." [Alpern] Up to 10^8 the approximate sum of reciprocals is ~1.232884485... [Jason Earls, Oct 15 2010] Let f(n) = a(n) - floor(sqrt(a(n)))^2, or how much larger a(n) is than the largest square number <= a(n). Then f(n) is odd for all even squares, and even for all odd squares where n > 5. See "Ulam spiral" in links. - Christian N. K. Anderson, Jun 12 2013 a(n) = A239585(n) * A239586(n). - Reinhard Zumkeller, Mar 22 2014 REFERENCES P. D. James, The Private Patient, Knopf, NY, 2008, p. 192. (from N. J. A. Sloane, Aug 27 2009) LINKS T. D. Noe, Table of n, a(n) for n = 1..10537 Dario Alpern, Brilliant Numbers. Christian N. K. Anderson, Ulam Spiral of n=1..3000. EXAMPLE 1711 = 29*59 is in the sequence since both of its factors have two digits. MATHEMATICA fQ[n_] := Block[{fi = FactorInteger@n}, Plus @@ Last /@ fi == 2 && Floor[ Log[10, fi[[1, 1]] ]] == Floor[ Log[10, fi[[ -1, 1]] ]]]; Select[ Range@792, fQ@# &] (* Robert G. Wilson v, May 26 2006 *) brilQ[n_]:=Module[{fin=FactorInteger[n]}, Total[Transpose[fin][[2]]]==2 &&  Length[Union[IntegerLength[Transpose[fin][[1]]]]]==1]; Select[Range[1000], brilQ]  (* Harvey P. Dale, Feb 06 2011 *) PROG (PARI) is(n)=my(f=factor(n)); (#f[, 1]==1 && f[1, 2]==2) || (#f[, 1]==2 && f[1, 2]==1 && f[2, 2]==1 && #Str(f[1, 1])==#Str(f[2, 1])) \\ Charles R Greathouse IV, Jun 16 2011 (Haskell) import Data.Function (on) a078972 n = a078972_list !! (n-1) a078972_list = filter brilliant a001358_list where    brilliant x = (on (==) a055642) p (x `div` p) where p = a020639 x -- Reinhard Zumkeller, Mar 22 2014, Nov 10 2013-- Reinhard Zumkeller, Mar 22 2014 (Python) from sympy import sieve A078972 = [] for n in range(3): ....pr = list(sieve.primerange(10**n, 10**(n+1))) ....for i, p in enumerate(pr): ........for q in pr[i:]: ............A078972.append(p*q) A078972 = sorted(A078972) # Chai Wah Wu, Aug 26 2014 CROSSREFS Cf. A001358, A085647, A084126, A084127, A055642, A085721. Sequence in context: A113433 A115654 A036326 * A115652 A236026 A193305 Adjacent sequences:  A078969 A078970 A078971 * A078973 A078974 A078975 KEYWORD base,easy,nonn AUTHOR Jason Earls, Jan 12 2003 EXTENSIONS Edited by N. J. A. Sloane, Aug 27 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 16 07:12 EST 2018. Contains 317258 sequences. (Running on oeis4.)