login
A239585
Prime factor <= other prime factor of n-th brilliant number, cf. A078972.
3
2, 2, 3, 2, 2, 3, 3, 5, 5, 7, 11, 11, 13, 11, 11, 13, 13, 11, 17, 13, 11, 17, 11, 19, 13, 17, 13, 11, 19, 11, 11, 13, 17, 11, 17, 23, 13, 19, 13, 11, 19, 13, 17, 11, 23, 11, 13, 17, 19, 23, 17, 11, 13, 19, 11, 13, 17, 11, 19, 29, 23, 11, 13, 19, 29, 17, 11
OFFSET
1,1
COMMENTS
a(n) = A020639(A078972(n)) = A078972(n) / A239586(n).
A055642(a(n)) = A055642(A239586(n)).
LINKS
Dario Alpern, Brilliant Numbers
EXAMPLE
n | A239585(n) | A239586(n) | A078972(n) Lengths of factors
-------+------------+------------+----------- ------------------
1 | 2 | 2 | 4 1
5 | 2 | 7 | 14
10 | 7 | 7 | 49
|.........................| ..................
11 | 11 | 11 | 121 2
78 | 11 | 97 | 1067
100 | 37 | 37 | 1369
241 | 97 | 97 | 9409
|.........................| ..................
242 | 101 | 101 | 10201 3
1000 | 193 | 263 | 50759
2530 | 101 | 997 | 100697
10000 | 743 | 937 | 696191
10537 | 997 | 997 | 994009
|.........................| ..................
10538 | 1009 | 1009 | 1018081 4
MATHEMATICA
Table[With[{f = FactorInteger[k]}, If[Total[f[[All, 2]]] == 2 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1, f[[1, 1]], Nothing]], {k, 1000}] (* Paolo Xausa, Oct 02 2024 *)
dlist2[d_] := Union[Times @@@ Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 2]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
Map[FactorInteger[#][[1, 1]]&, Flatten[Array[dlist2, 2]]] (* Paolo Xausa, Oct 09 2024 *)
PROG
(Haskell)
a239585 = a020639 . a078972
CROSSREFS
Subsequence of A084126.
Sequence in context: A153095 A254574 A306991 * A321788 A182093 A254618
KEYWORD
nonn,look,base
AUTHOR
Reinhard Zumkeller, Mar 22 2014
STATUS
approved