login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182093
Partial sums of A005590.
3
0, 1, 2, 2, 3, 2, 2, 3, 4, 2, 1, 2, 2, 3, 4, 4, 5, 2, 0, 1, 0, 2, 3, 2, 2, 3, 4, 4, 5, 4, 4, 5, 6, 2, -1, 0, -2, 1, 2, 0, -1, 2, 4, 3, 4, 2, 1, 2, 2, 3, 4, 4, 5, 4, 4, 5, 6, 4, 3, 4, 4, 5, 6, 6, 7, 2, -2, -1, -4, 0, 1, -2, -4, 1, 4, 2, 3, 0, -2, -1, -2, 2, 5
OFFSET
0,3
COMMENTS
a(n+1) = a(n) + A005590(n+1).
LINKS
FORMULA
a(2^n) = n + 1.
G.f.: (x/(1 - x))*Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1))). - Ilya Gutkovskiy, Feb 27 2017
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := a[n] = If[OddQ@ n, a[(n - 1)/2 + 1] - a[(n - 1)/2], a[n/2]]; Accumulate@ Table[a@ n, {n, 0, 104}] (* after Jean-François Alcover at A005590, or *)
Table[SeriesCoefficient[(x/(1 - x)) Product[(1 + x^(2^k) - x^(2^(k + 1))), {k, 0, n}], {x, 0, n}], {n, 0, 70}] (* Michael De Vlieger, Feb 27 2017 *)
PROG
(Haskell)
a182093 n = a182093_list !! n
a182093_list = scanl1 (+) a005590_list
CROSSREFS
Cf. A005590.
Sequence in context: A306991 A239585 A321788 * A254618 A268672 A054483
KEYWORD
sign,look
AUTHOR
Reinhard Zumkeller, Apr 11 2012
STATUS
approved