|
|
A337372
|
|
Primitive terms of A246282: Numbers that are included in that sequence, but none of whose proper divisors are.
|
|
11
|
|
|
4, 6, 9, 10, 14, 15, 21, 35, 39, 49, 57, 69, 91, 125, 242, 275, 286, 325, 338, 363, 418, 425, 442, 475, 494, 506, 561, 575, 598, 646, 682, 715, 722, 725, 754, 775, 782, 806, 845, 847, 867, 874, 925, 957, 962, 1023, 1025, 1045, 1054, 1058, 1066, 1075, 1105, 1118, 1175, 1178, 1221, 1222, 1235, 1265, 1309, 1325, 1334, 1353
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers k whose only divisor in A246282 is k itself, i.e., A003961(k) > 2k, but for none of the proper divisors d|k, d<k it holds that A003961(d) > 2d.
Question: Do the odd terms in A326134 all occur here? Answer is yes, if the following conjecture holds: This is a subsequence of A263837, nonabundant numbers. In other words, we claim that any abundant number k (A005101) has A337345(k) > 1 and thus is a term of A341610.
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
Block[{a = {}, b = {}}, Do[If[2 i < Times @@ Map[#1^#2 & @@ # &, FactorInteger[i] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[i == 1], AppendTo[a, i]; If[IntersectingQ[Most@ Divisors[i], a], AppendTo[b, i]]], {i, 1400}]; Complement[a, b]] (* Michael De Vlieger, Feb 22 2021 *)
|
|
PROG
|
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
|
|
CROSSREFS
|
Positions of ones in A337345 and in A341609 (characteristic function).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|