login
A341609
Characteristic function of A337372: a(n) = 1 if A337345(n) = 1, otherwise 0.
3
0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
Characteristic function of the primitive terms of A246282.
FORMULA
a(n) = [A337345(n) = 1], where [ ] is the Iverson bracket.
MATHEMATICA
f[1] = 1; f[n_] := Times @@ (NextPrime[#1]^#2 & @@@ FactorInteger[n]); a[n_] := Boole[DivisorSum[n, 1 &, f[#] > 2*# &] == 1]; Array[a, 100] (* Amiram Eldar, Feb 22 2021 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A341609(n) = if(A003961(n) < 2*n, 0, fordiv(n, d, if((d<n)&&(A003961(d) > 2*d), return(0))); (1)); \\ After code in A341619
CROSSREFS
Cf. also A341619.
Sequence in context: A353555 A353476 A288377 * A064911 A174898 A099618
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 22 2021
STATUS
approved