login
A341619
Characteristic function of primitive nondeficient numbers (A006039): a(n) = 1 if proper multiples of n are all abundant, and proper divisors of n are all deficient, 0 otherwise.
11
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
1
FORMULA
a(n) = [A341620(n) == 1], where [ ] is the Iverson bracket.
a(n) = 1 iff A341620(n) = 1.
MATHEMATICA
a[n_] := Boole[DivisorSum[n, 1 &, DivisorSigma[1, #] >= 2*# &] == 1]; Array[a, 100] (* Amiram Eldar, Feb 22 2021 *)
PROG
(PARI) A341619(n) = if(sigma(n)<(2*n), 0, fordiv(n, d, if((d<n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395
CROSSREFS
Cf. A006039, A071395, A337690 (inverse Möbius transform), A341620.
Cf. also A341609.
Sequence in context: A177063 A378529 A378448 * A378537 A379475 A302049
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 21 2021
STATUS
approved