login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341622
Numbers that are either already perfect, or a perfect number is eventually reached if we start doubling them.
4
3, 6, 7, 14, 28, 31, 62, 124, 127, 248, 254, 496, 508, 1016, 2032, 4064, 8128, 8191, 16382, 32764, 65528, 131056, 131071, 262112, 262142, 524224, 524284, 524287, 1048448, 1048568, 1048574, 2096896, 2097136, 2097148, 4193792, 4194272, 4194296, 8387584, 8388544, 8388592, 16775168, 16777088, 16777184, 33550336, 33554176, 33554368
OFFSET
1,1
COMMENTS
Numbers whose closure under map x -> 2x contains a perfect number (one of the terms of A000396).
Numbers k such that A341621(k) > A336915(k). No powers of 2 are included because they stay deficient forever.
Sequence is the union of odd perfect numbers (whose existence is contested, see e.g., A326051), and the numbers of the form (2^p - 1) * 2^e, where p is one of the primes in A000043, and e < p.
MATHEMATICA
m = MersennePrimeExponent[Range[8]]; f[p_] := 2^Range[0, p - 1]*(2^p - 1); Select[Sort @ Flatten[f /@ m], # <= 2^m[[-1]] - 1 &] (* Amiram Eldar, Feb 20 2021, for calculating terms below 10^1500, the current lower bound for odd perfect numbers *)
PROG
(PARI) isA341622(n) = if(!bitand(n, n-1), 0, for(i=0, oo, my(n2 = n+n); if(sigma(n) >= n2, return(sigma(n)==n2)); n = n2));
CROSSREFS
Subsequence of A335431 provided there are no odd perfect numbers.
Sequence in context: A350277 A350278 A233757 * A139247 A124611 A281900
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 19 2021
STATUS
approved