login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337370
Expansion of sqrt(2 / ( (1-12*x+4*x^2) * (1-2*x+sqrt(1-12*x+4*x^2)) )).
4
1, 8, 74, 736, 7606, 80464, 864772, 9400192, 103061158, 1137528688, 12623082284, 140697113792, 1574005263676, 17663830073504, 198760191043784, 2241743315230208, 25335473017856774, 286850379192127664, 3252960763923781276, 36942512756224955456, 420084161646913792724
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).
8*(2*n - 3)*(n - 2)*a(n - 3) - 4*(10*n^2 - 35*n + 27)*a(n - 2) - 2*(10*n^2 + 5*n - 3)*a(n - 1) + (2*n + 1)*n*a(n) = 0. - Robert Israel, Aug 27 2020
a(0) = 1, a(1) = 8 and n * (2*n+1) * (4*n-3) * a(n) = (4*n-1) * (24*n^2-12*n-4) * a(n-1) - 4 * (n-1) * (2*n-1) * (4*n+1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 29 2020
a(n) ~ 2^(n - 5/4) * (1 + sqrt(2))^(2*n + 3/2) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 31 2020
MAPLE
Rec:= 8*(2*n - 3)*(n - 2)*a(n - 3) - 4*(10*n^2 - 35*n + 27)*a(n - 2) - 2*(10*n^2 + 5*n - 3)*a(n - 1) + (2*n + 1)*n*a(n) = 0:
f:= gfun:-rectoproc({Rec, a(0)=1, a(1)=8, a(2)=74}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Aug 27 2020
MATHEMATICA
a[n_] := Sum[2^(n - k) * Binomial[2*k, k] * Binomial[2*n + 1, 2*k], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Aug 25 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(sqrt(2/((1-12*x+4*x^2)*(1-2*x+sqrt(1-12*x+4*x^2)))))
(PARI) {a(n) = sum(k=0, n, 2^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
CROSSREFS
Column k=2 of A337369.
Cf. A337390.
Sequence in context: A190953 A220458 A144850 * A357208 A163970 A116251
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 25 2020
STATUS
approved