login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of sqrt(2 / ( (1-12*x+4*x^2) * (1-2*x+sqrt(1-12*x+4*x^2)) )).
4

%I #23 Aug 31 2020 02:57:19

%S 1,8,74,736,7606,80464,864772,9400192,103061158,1137528688,

%T 12623082284,140697113792,1574005263676,17663830073504,

%U 198760191043784,2241743315230208,25335473017856774,286850379192127664,3252960763923781276,36942512756224955456,420084161646913792724

%N Expansion of sqrt(2 / ( (1-12*x+4*x^2) * (1-2*x+sqrt(1-12*x+4*x^2)) )).

%H Robert Israel, <a href="/A337370/b337370.txt">Table of n, a(n) for n = 0..938</a>

%F a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).

%F 8*(2*n - 3)*(n - 2)*a(n - 3) - 4*(10*n^2 - 35*n + 27)*a(n - 2) - 2*(10*n^2 + 5*n - 3)*a(n - 1) + (2*n + 1)*n*a(n) = 0. - _Robert Israel_, Aug 27 2020

%F a(0) = 1, a(1) = 8 and n * (2*n+1) * (4*n-3) * a(n) = (4*n-1) * (24*n^2-12*n-4) * a(n-1) - 4 * (n-1) * (2*n-1) * (4*n+1) * a(n-2) for n > 1. - _Seiichi Manyama_, Aug 29 2020

%F a(n) ~ 2^(n - 5/4) * (1 + sqrt(2))^(2*n + 3/2) / sqrt(Pi*n). - _Vaclav Kotesovec_, Aug 31 2020

%p Rec:= 8*(2*n - 3)*(n - 2)*a(n - 3) - 4*(10*n^2 - 35*n + 27)*a(n - 2) - 2*(10*n^2 + 5*n - 3)*a(n - 1) + (2*n + 1)*n*a(n) = 0:

%p f:= gfun:-rectoproc({Rec,a(0)=1,a(1)=8,a(2)=74},a(n),remember):

%p map(f, [$0..30]); # _Robert Israel_, Aug 27 2020

%t a[n_] := Sum[2^(n - k) * Binomial[2*k, k] * Binomial[2*n + 1, 2*k], {k, 0, n}]; Array[a, 21, 0] (* _Amiram Eldar_, Aug 25 2020 *)

%o (PARI) N=40; x='x+O('x^N); Vec(sqrt(2/((1-12*x+4*x^2)*(1-2*x+sqrt(1-12*x+4*x^2)))))

%o (PARI) {a(n) = sum(k=0, n, 2^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}

%Y Column k=2 of A337369.

%Y Cf. A337390.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Aug 25 2020