login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378658
a(n) = A337345(A091191(n)), where A337345 is the number of divisors d of n for which A003961(d) > 2*d, and A091191 lists the primitive abundant numbers.
3
3, 3, 3, 4, 4, 5, 2, 4, 3, 4, 2, 4, 3, 3, 2, 2, 6, 2, 2, 2, 6, 2, 6, 6, 2, 2, 7, 2, 6, 2, 2, 2, 6, 2, 6, 2, 6, 2, 5, 5, 2, 2, 2, 2, 6, 5, 2, 2, 4, 2, 2, 6, 2, 2, 5, 6, 2, 2, 2, 12, 2, 8, 2, 6, 2, 2, 2, 2, 6, 2, 2, 8, 2, 6, 2, 8, 6, 2, 2, 2, 8, 2, 6, 2, 2, 6, 8, 2, 2, 13, 2, 2, 2, 6, 2, 2, 8, 2, 6, 2, 2, 2, 4, 6
OFFSET
1,1
COMMENTS
For all n, a(n) > 1. This follows from a proof given in A337372. See also A378662.
Among the initial 10 million terms, there are 7835064 2's.
LINKS
FORMULA
{A337345(k) for k such that A080224(k) = 1}.
a(n) = 1+A378662(A091191(n)).
MATHEMATICA
s = Select[Range[2^11], DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &];
Map[Length@ Select[Divisors[#], 2 # < (Times @@ Map[Power @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi[p] + 1], e}] - Boole[# == 1]) &] &, s] (* Michael De Vlieger, Dec 06 2024 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A337345(n) = sumdiv(n, d, A003961(d)>(2*d));
is_A091191(n) = if(sigma(n)<=2*n, 0, fordiv(n, d, if(d<n && sigma(d)>2*d, return(0))); (1));
k=0; n=0; while(k<100000, n++; if(is_A091191(n), k++; print1(A337345(n), ", "); write("b378658.txt", k, " ", A337345(n))));
KEYWORD
nonn,look,new
AUTHOR
Antti Karttunen, Dec 05 2024
STATUS
approved