login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080224
Number of abundant divisors of n.
23
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 1, 0, 1, 0
OFFSET
1,24
COMMENTS
Number of divisors d of n with sigma(d)>2*d (sigma = A000203)
a(n)>0 iff n is abundant: a(A005101(n))>0, a(A000396(n))=0 and a(A005100(n))=0; a(A091191(n))=1; a(A091192(n))>1; a(A091193(n))=n and a(m)<>n for m < A091193(n). - Reinhard Zumkeller, Dec 27 2003
LINKS
Eric Weisstein's World of Mathematics, Abundant Number.
FORMULA
a(n) + A080225(n) + A080226(n) = A000005(n).
From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294937(d).
a(n) = A294929(n) + A294937(n).
a(n) = 1 iff A294930(n) = 1.
(End)
EXAMPLE
Divisors of n=24: {1,2,3,4,6,8,12,24}, two of them are abundant: 12=A005101(1) and 24=A005101(4), therefore a(24)=2.
MAPLE
A080224 := proc(n)
a := 0 ;
for d in numtheory[divisors](n) do
if numtheory[sigma](d) > 2*d then
a := a+1 ;
end if;
end do:
a;
end proc:
seq(A080224(n), n=1..80) ; # R. J. Mathar, Feb 22 2021
MATHEMATICA
Table[Count[Divisors[n], _?(DivisorSigma[1, #]>2#&)], {n, 110}] (* Harvey P. Dale, Jun 14 2013 *)
PROG
(PARI) a(n) = sumdiv(n, d, sigma(d)>2*d) \\ Michel Marcus, Mar 09 2013
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 07 2003
STATUS
approved